Skip to main content

Quantum Algorithms for Trust-Based AI Applications

  • Conference paper
  • First Online:
Complex, Intelligent and Software Intensive Systems (CISIS 2023)

Abstract

Quantum computing is a rapidly growing field of computing that leverages the principles of quantum mechanics to significantly speed up computations that are beyond the capabilities of classical computing. This type of computing can revolutionize the field of trustworthy artificial intelligence, where decision-making is data-driven, complex, and time-consuming. Different trust-based AI systems have been proposed for different AI applications. In this paper, we have reviewed different trust-based AI systems and summarized their alternative quantum algorithms. This review provides an overview of quantum algorithms for three trust-based AI applications: fake user detection in social networks, medical diagnostic system, and finding the shortest path used in social network trust aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adedoyin, A., et al.: Quantum algorithm implementations for beginners. arXiv preprint arXiv:1804.03719 (2018)

  2. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  MATH  Google Scholar 

  3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10,008 (2008)

    Google Scholar 

  4. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cade, C., Folkertsma, M., Niesen, I., Weggemans, J.: Quantum algorithms for community detection and their empirical run-times. arXiv preprint arXiv:2203.06208 (2022)

  6. Cao, Q., Sirivianos, M., Yang, X., Pregueiro, T.: Aiding the detection of fake accounts in large scale social online services. In: Presented as part of the 9th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 12), pp. 197–210 (2012)

    Google Scholar 

  7. De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Generalized louvain method for community detection in large networks. In: 2011 11th International Conference on Intelligent Systems Design and Applications, pp. 88–93. IEEE (2011)

    Google Scholar 

  8. Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum. arXiv preprint quant-ph/9607014 (1996)

    Google Scholar 

  9. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  10. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinneburg, A.: A density based algorithm for discovering clusters in large spatial databases with noise. In: KDD Conference, 1996 (1996)

    Google Scholar 

  12. Javaid, A.: Understanding dijkstra’s algorithm. SSRN 2340905 (2013)

    Google Scholar 

  13. Johnson, D.B.: A note on dijkstra’s shortest path algorithm. J. ACM (JACM) 20(3), 385–388 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jozsa, R.: Searching in grover’s algorithm. arXiv preprint quant-ph/9901021 (1999)

    Google Scholar 

  15. Kaur, D., Uslu, S., Durresi, A.: Trust-based security mechanism for detecting clusters of fake users in social networks. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) WAINA 2019. AISC, vol. 927, pp. 641–650. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15035-8_62

    Chapter  MATH  Google Scholar 

  16. Kaur, D., Uslu, S., Durresi, A.: Requirements for trustworthy artificial intelligence – a review. In: Barolli, L., Li, K.F., Enokido, T., Takizawa, M. (eds.) NBiS 2020. AISC, vol. 1264, pp. 105–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57811-4_11

    Chapter  MATH  Google Scholar 

  17. Kaur, D., Uslu, S., Durresi, A.: Trustworthy AI explanations as an interface in medical diagnostic systems. In: Advances in Network-Based Information Systems: The 25th International Conference on Network-Based Information Systems (NBiS-2022), pp. 119–130. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-14314-4_12

  18. Kaur, D., Uslu, S., Durresi, A., Badve, S., Dundar, M.: Trustworthy explainability acceptance: a new metric to measure the trustworthiness of interpretable ai medical diagnostic systems. In: Barolli, L., Yim, K., Enokido, T. (eds.) CISIS 2021. LNNS, vol. 278, pp. 35–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79725-6_4

    Chapter  Google Scholar 

  19. Kaur, D., Uslu, S., Durresi, M., Durresi, A.: A geo-location and trust-based framework with community detection algorithms to filter attackers in 5g social networks. Wirel. Netw. 2022, 1–9 (2022)

    MATH  Google Scholar 

  20. Kaur, D., Uslu, S., Rittichier, K.J., Durresi, A.: Trustworthy artificial intelligence: a review. ACM Comput. Surv. (CSUR) 55(2), 1–38 (2022)

    Article  Google Scholar 

  21. Kleinbaum, D.G., Dietz, K., Gail, M., Klein, M., Klein, M.: Logistic Regression. Springer, Heidelberg (2002)

    Google Scholar 

  22. Krauss, T., McCollum, J.: Solving the network shortest path problem on a quantum annealer. IEEE Trans. Quant. Eng. 1, 1–12 (2020)

    Article  MATH  Google Scholar 

  23. Liu, H.L., et al.: Quantum algorithm for logistic regression. arXiv preprint arXiv:1906.03834 (2019)

  24. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411 (2013)

  25. MacQuarrie, E.R., Simon, C., Simmons, S., Maine, E.: The emerging commercial landscape of quantum computing. Nat. Rev. Phys. 2(11), 596–598 (2020)

    Article  MATH  Google Scholar 

  26. Magzhan, K., Jani, H.M.: A review and evaluations of shortest path algorithms. Int. J. Sci. Technol. Res. 2(6), 99–104 (2013)

    MATH  Google Scholar 

  27. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  MATH  Google Scholar 

  28. Ray, P.: Quantum simulation of dijkstra’ algorithm. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2, 30–43 (2014)

    MATH  Google Scholar 

  29. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Google Scholar 

  30. Rittichier, K.J., Kaur, D., Uslu, S., Durresi, A.: A trust-based tool for detecting potentially damaging users in social networks. In: Barolli, L., Chen, H.-C., Enokido, T. (eds.) NBiS 2021. LNNS, vol. 313, pp. 94–104. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84913-9_9

    Chapter  Google Scholar 

  31. Ruan, Y., Durresi, A.: A survey of trust management systems for online social communities-trust modeling, trust inference and attacks. Knowl.-Based Syst. 106, 150–163 (2016)

    Article  MATH  Google Scholar 

  32. Ruan, Y., Durresi, A., Alfantoukh, L.: Using twitter trust network for stock market analysis. Knowl.-Based Syst. 145, 207–218 (2018)

    Article  MATH  Google Scholar 

  33. Ruan, Y., Zhang, P., Alfantoukh, L., Durresi, A.: Measurement theory-based trust management framework for online social communities. ACM Trans. Internet Technol. (TOIT) 17(2), 16 (2017)

    Article  Google Scholar 

  34. Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)

    Google Scholar 

  35. National Academies of Sciences, E., Medicine, et al.: Quantum computing: progress and prospects (2019)

    Google Scholar 

  36. Sidey-Gibbons, J.A., Sidey-Gibbons, C.J.: Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 1–18 (2019)

    Article  MATH  Google Scholar 

  37. Steane, A.: Quantum computing. Rep. Progr. Phys. 61(2), 117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Uslu, S., Kaur, D., Rivera, S.J., Durresi, A., Babbar-Sebens, M.: Decision support system using trust planning among food-energy-water actors. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 1169–1180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_98

    Chapter  MATH  Google Scholar 

  39. Uslu, S., Kaur, D., Rivera, S.J., Durresi, A., Babbar-Sebens, M.: Trust-based game-theoretical decision making for food-energy-water management. In: Barolli, L., Hellinckx, P., Enokido, T. (eds.) BWCCA 2019. LNNS, vol. 97, pp. 125–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33506-9_12

    Chapter  Google Scholar 

  40. Uslu, S., Kaur, D., Rivera, S.J., Durresi, A., Babbar-Sebens, M.: Trust-based decision making for food-energy-water actors. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020. AISC, vol. 1151, pp. 591–602. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44041-1_53

    Chapter  Google Scholar 

  41. Uslu, S., Kaur, D., Rivera, S.J., Durresi, A., Babbar-Sebens, M., Tilt, J.H.: Control theoretical modeling of trust-based decision making in food-energy-water management. In: Barolli, L., Poniszewska-Maranda, A., Enokido, T. (eds.) CISIS 2020. AISC, vol. 1194, pp. 97–107. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-50454-0_10

    Chapter  Google Scholar 

  42. Uslu, S., Kaur, D., Rivera, S.J., Durresi, A., Babbar-Sebens, M., Tilt, J.H.: A trustworthy human-machine framework for collective decision making in food-energy-water management: the role of trust sensitivity. Knowl.-Based Syst. 213, 106683 (2021)

    Google Scholar 

  43. Uslu, S., Kaur, D., Rivera, S.J., Durresi, A., Durresi, M., Babbar-Sebens, M.: Trustworthy acceptance: a new metric for trustworthy artificial intelligence used in decision making in food–energy–water sectors. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 225, pp. 208–219. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75100-5_19

    Chapter  MATH  Google Scholar 

  44. Wang, L.: Support Vector Machines: Theory and Applications, vol. 177. Springer, Heidlberg (2005). https://doi.org/10.1007/b95439

    Book  MATH  Google Scholar 

  45. Xiao, C., Freeman, D.M., Hwa, T.: Detecting clusters of fake accounts in online social networks. In: Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp. 91–101 (2015)

    Google Scholar 

  46. Xie, X., Duan, L., Qiu, T., Li, J.: Quantum algorithm for mmng-based dbscan. Sci. Rep. 11(1), 15559 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan Durresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, D., Uslu, S., Durresi, A. (2023). Quantum Algorithms for Trust-Based AI Applications. In: Barolli, L. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-031-35734-3_1

Download citation

Publish with us

Policies and ethics