Skip to main content

Human Ergonomic Assessment Within “Industry 5.0” Workplace: Do Standard Observational Methods Correlate with Kinematic-Based Index in Reaching Tasks?

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2023)

Abstract

This work aimed to investigate the contribution of each single joint during the execution of whole-body reaching tasks to the overall discomfort of the worker evaluated through standard observational methods.

Forty-five healthy volunteers were asked to reach and rotate 2 spheres placed on a custom-made rack in standardized positions, i.e., above the head and one at floor level at the center side. Whole-body kinematics was acquired via a system based on wearable inertial measurement units, which represent proper enabling technologies within human-centered “Industry 5.0” context. Standard ergonomic scales including RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body Assessment), and MMGA (Method for Movement and Gesture Assessment), were assessed for each subject and each sphere position. Moreover, a quantitative index based on actual joint kinematics, i.e., the W1 index, was computed for each joint angle involved in the task. Pearson’s correlation analysis was performed for W1 relative to each joint with respect to RULA, REBA, and MMGA scores.

Considering REBA and MMGA scores, the most comfortable reaching areas were the ones in which the sphere was positioned at the top; in contrast, the lowest positions evidenced the most increased discomfort indexes. The RULA did not result sensitive to the different positions, while REBA and MMGA seemed to be more influenced by the range of motion of the lower limb joint angles than the upper limb ones.

This study underlines the necessity to focus on multiple potential contributors to work-related musculoskeletal disorders and underlines the importance of subject-specific approaches toward risk assessment by exploiting quantitative measurements and wearable technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eurofound First findings: Sixth European working conditions survey (2015)

    Google Scholar 

  2. Manghisi, V.M., Uva, A.E., Fiorentino, M., Bevilacqua, V., Trotta, G.F., Monno, G.: Real time RULA assessment using Kinect v2 sensor. Appl. Ergon. 65, 481–491 (2017). https://doi.org/10.1016/j.apergo.2017.02.015

    Article  Google Scholar 

  3. Myrelid, A., Olhager, J.: Hybrid manufacturing accounting in mixed process environments: a methodology and a case study. Int. J. Prod. Econ. 210, 137–144 (2019). https://doi.org/10.1016/j.ijpe.2019.01.024

    Article  Google Scholar 

  4. Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L.: Industry 4.0 and industry 5.0—inception, conception and perception. J. Manuf. Syst. 61, 530–535 (2021). https://doi.org/10.1016/j.jmsy.2021.10.006

  5. Leng, J., et al.: Industry 5.0: prospect and retrospect. J. Manuf. Syst. 65, 279–295 (2022). https://doi.org/10.1016/j.jmsy.2022.09.017

  6. Maddikunta, P.K.R., et al.: Industry 5.0: a survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 26, 100257 (2022). https://doi.org/10.1016/j.jii.2021.100257

  7. Bortolini, M., Gamberi, M., Pilati, F., Regattieri, A.: Automatic assessment of the ergonomic risk for manual manufacturing and assembly activities through optical motion capture technology. Procedia CIRP 72, 81–86 (2018). https://doi.org/10.1016/j.procir.2018.03.198

    Article  Google Scholar 

  8. Li, G., Buckle, P.: Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods. Ergonomics 42, 674–695 (1999). https://doi.org/10.1080/001401399185388

    Article  Google Scholar 

  9. David, G.C.: Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occup. Med. (Chic. Ill) 55, 190–199 (2005). https://doi.org/10.1093/occmed/kqi082

  10. Murphy, M.A., Willén, C., Sunnerhagen, K.S.: Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil. Neural Repair 25, 71–80 (2011). https://doi.org/10.1177/1545968310370748

    Article  Google Scholar 

  11. Colombini, D., Occhipinti, E.: Preventing upper limb work-related musculoskeletal disorders (UL-WMSDS): New approaches in job (re)design and current trends in standardization. Appl. Ergon. 37, 441–450 (2006). https://doi.org/10.1016/j.apergo.2006.04.008

    Article  Google Scholar 

  12. Karhu, O., Kansi, P., Kuorinka, I.: Correcting working postures in industry: a practical method for analysis. Appl. Ergon. 8, 199–201 (1977). https://doi.org/10.1016/0003-6870(77)90164-8

    Article  Google Scholar 

  13. McAtamney, L., Nigel Corlett, E.: RULA: a survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 24, 91–99 (1993). https://doi.org/10.1016/0003-6870(93)90080-S

    Article  Google Scholar 

  14. Hignett, S., McAtamney, L.: Rapid entire body assessment (REBA). Appl. Ergon. 31, 201–205 (2000). https://doi.org/10.1016/S0003-6870(99)00039-3

    Article  Google Scholar 

  15. Andreoni, G., Mazzola, M., Ciani, O., Zambetti, M., Romero, M., Costa, F., Preatoni, E.: Method for movement and gesture assessment (MMGA) in ergonomics. In: Duffy, V.G. (ed.) ICDHM 2009. LNCS, vol. 5620, pp. 591–598. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02809-0_62

    Chapter  Google Scholar 

  16. Kee, D., Karwowski, W.: LUBA: an assessment technique for postural loading on the upper body based on joint motion discomfort and maximum holding time. Appl. Ergon. 32, 357–366 (2001). https://doi.org/10.1016/S0003-6870(01)00006-0

    Article  Google Scholar 

  17. Lorenzini, M., Kim, W., Ajoudani, A.: An online multi-index approach to human ergonomics assessment in the workplace. IEEE Trans. Hum.-Mach. Syst. 52, 812–823 (2022). https://doi.org/10.1109/THMS.2021.3133807

    Article  Google Scholar 

  18. Oldfielf, R.C.: The assesment and analysis of handedness: the Edimburgh inventory. Neuropsychologia 9, 97–113 (1971). https://doi.org/10.1007/978-0-387-79948-3_6053

    Article  Google Scholar 

  19. Michaelsen, S.M., Jacobs, S., Roby-Brami, A., Levin, M.F.: Compensation for distal impairments of grasping in adults with hemiparesis. Exp. Brain Res. 157, 162–173 (2004). https://doi.org/10.1007/s00221-004-1829-x

    Article  Google Scholar 

  20. Whitmore, M., Boyer, J., Holubec, K.: NASA-STD-3001, space flight human-system standard and the human integration design handbook. In: Proceedings of the Industrial and Systems Engineering Research Conference (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Scalona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scalona, E., De Marco, D., Avanzini, P., Fabbri Destro, M., Andreoni, G., Lopomo, N.F. (2023). Human Ergonomic Assessment Within “Industry 5.0” Workplace: Do Standard Observational Methods Correlate with Kinematic-Based Index in Reaching Tasks?. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2023. Lecture Notes in Computer Science, vol 14028. Springer, Cham. https://doi.org/10.1007/978-3-031-35741-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35741-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35740-4

  • Online ISBN: 978-3-031-35741-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics