Skip to main content

Challenges for Standardized Ergonomic Assessments by Digital Human Modeling

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14028))

Included in the following conference series:

  • 805 Accesses

Abstract

Today, many existing and emerging Digital Human Models (DHM) are available. These tools are increasingly used both by research institutions and private companies. Applications in the field of occupational health and safety were analyzed by systematically reviewing international scientific literature. The review results demonstrate the diversity of applied models, tools, methods, and data formats. Currently, merging and evaluating various study data is nearly impossible. This review helps to understand the hurdles and challenges on the way to standardization of digital ergonomic assessment tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Citavi 6 for Windows, Copyright © 2022 by Swiss Academic Software GmbH. All rights reserved.

References

  1. Wischniewski, S.: Delphi Survey: Digital Ergonomics 2025. In: Delphi Survey: Digital Ergonomics 2025; (2013)

    Google Scholar 

  2. Offensive Mittelstand, editor. Personenbezogene digitale Ergonomie (2018)

    Google Scholar 

  3. Colquhoun, H.L., Levac, D., O’Brien, K.K., et al.: Scoping reviews: time for clarity in definition, methods, and reporting. J. Clin. Epidemiol. 67(12), 1291–1294 (2014). https://doi.org/10.1016/j.jclinepi.2014.03.013. PMID: 25034198

  4. Arksey, H., O’Malley, L.: Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8(1), 19–32 (2005). https://doi.org/10.1080/1364557032000119616

    Article  Google Scholar 

  5. Daudt, H.M., van Mossel, C., Scott, S.J.: Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. BMC Med. Res. Methodol. 13(48) (2013). https://doi.org/10.1186/1471-2288-13-48

  6. Hidalgo Landa, A., Szabo, I., Le Brun, L., Owen, I., Fletcher, G., Hill, M.: An evidence-based approach to scoping reviews. Electron. J. Inf. Syst. Eval. 14(1), 46–52 (2011)

    Google Scholar 

  7. Levac, D., Colquhoun, H.L., O’Brien, K.K.: Scoping studies: advancing the methodology. Implement Sci. 5, 69 (2010). https://doi.org/10.1186/1748-5908-5-69. PMID: 20854677

  8. Tricco, A.C., Lillie, E., Zarin, W., et al.: PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Int. Med. 169(7): 467–473 (2018). https://doi.org/10.7326/M18-0850. PMID: 30178033

  9. Godin, K., Stapleton, J., Kirkpatrick, S.I., Hanning, R.M., Leatherdale, S.T.: Applying systematic review search methods to the grey literature: a case study examining guidelines for school-based breakfast programs in Canada. Syst. Rev. 4, 138 (2015). https://doi.org/10.1186/s13643-015-0125-0. PMID: 26494010

  10. Liberati, A., Altman, D.G., Tetzlaff, J., et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6(7), e1000100 (2009). https://doi.org/10.1371/journal.pmed.1000100. PMID: 19621070

  11. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7), e1000097 (2009). https://doi.org/10.1371/journal.pmed.1000097. PMID: 19621072

  12. Page, M.J., McKenzie, J.E., Bossuyt, P.M.M., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst. Rev. 10(1) (2021). https://doi.org/10.1186/s13643-021-01626-4

  13. Demirel, H.O., Ahmed, S., Duffy, V.G.: Digital human modeling: a review and reappraisal of origins, present, and expected future methods for representing humans computationally. Int. J. Hum.-Comput. Interact. 38(10), 897–937 (2022). https://doi.org/10.1080/10447318.2021.1976507

  14. Paul, G.E., Wischniewski, S.: Standardisation of digital human models. Ergonomics 55(9), 1115–1118 (2012). https://doi.org/10.1080/00140139.2012.690454. PMID: 22676278

  15. Mühlstedt, J.: Digitale Menschmodelle. In: Bullinger-Hoffmann, A.C., Mühlstedt, J. (eds.) Homo sapiens digitalis - Virtuelle Ergonomie und digitale Menschenmodelle, pp. 73–182. Springer Vieweg (2016)

    Google Scholar 

  16. Bullinger-Hoffmann, A.C., Mühlstedt, J. (eds.) Homo sapiens digitalis - Virtuelle Ergonomie und digitale Menschenmodelle. Springer Vieweg (2016)

    Google Scholar 

  17. Wolf, A., Miehling, J., Wartzack, S., et al.: Virtuelles Planen und Bewerten menschlicher Arbeit. Arbeitsmedizin, Sozialmedizin, Umweltmedizin: ASU, Zeitschrift für medizinische Prävention 54(6) (2019)

    Google Scholar 

  18. Duffy, V.G. (ed.): Handbook of Digital Human Modeling: Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Boca Raton (2009)

    Google Scholar 

  19. Bubb, H.: Why do we need digital human models? In: Scataglini, S., Paul, G.E. (eds.) DHM and Posturography, pp. 7–32 (2019)

    Google Scholar 

  20. Regazzoni, D., Rizzi, C.: Virtualization of the human in the digital factory. In: Kenett, R.S., Swarz, R.S., Zonnenshain, A. (eds.) Systems Engineering in the Fourth Industrial Revolution, pp. 161–189. Wiley (2019)

    Google Scholar 

  21. Zhu, W., Fan, X., Zhang, Y.: Applications and research trends of digital human models in the manufacturing industry. Virtual Reality Intell. Hardw. 1(6), 558–579 (2019). https://doi.org/10.1016/j.vrih.2019.09.005

    Article  Google Scholar 

  22. Keyvani, A., Lämkull, D., Bolmsjö, G., Örtengren, R.: Considerations for aggregation of motion-captured files in structured databases for DHM applications. In: Considerations for Aggregation of Motion-Captured Files in Structured Databases for DHM Applications (2013)

    Google Scholar 

  23. Bonin, D., Wischniewski, S., Wirsching, H.-J., Upmann, A., Rausch, J., Paul, G.E.: Exchanging data between digital human modeling systems - a review of data formats. In: Exchanging Data Between Digital Human Modeling Systems - A Review of Data Formats (2014)

    Google Scholar 

  24. Schafer M. Internal technical memo #39 [online]: Acclaim Advanced Technologies Group (1994). http://www.darwin3d.com/gamedev/acclaim.zip

  25. Meredith, M., Maddock, S.: Motion capture file formats explained (2001)

    Google Scholar 

  26. Luciani, A., Evrard, M., Couroussé, D., Castagné, N., Cadoz, C., Florens, J.-L.: A basic gesture and motion format for virtual reality multisensory applications. arXiv (2010)

    Google Scholar 

  27. Motion Lab Systems. The C3D file format user guide (2008). https://www.c3d.org/docs/C3D_User_Guide_2008.pdf

  28. Khronos Group. COLLADA – Digital Asset Schema Release 1.5.0 (2008). https://www.khronos.org/files/collada_spec_1_5.pdf

  29. ISO. Information technology - Computer graphics, image processing and environmental data representation - Extensible 3D (X3D) encodings - Part 3: Compressed binary encoding; 2015 (2015). https://www.iso.org/standard/60504.html

  30. ISO. Information technology — Computer graphics, image processing and environmental data representation — Extensible 3D (X3D) encodings — Part 2: Classic VRML encoding; 2015 (2015). https://www.iso.org/standard/60503.html

  31. ISO. Information technology — Computer graphics, image processing and environmental data representation — Extensible 3D (X3D) encodings — Part 1: Extensible Markup Language (XML) encoding; 2015 (2015). https://www.iso.org/standard/60502.html

  32. ISO. Information technology — Computer graphics, image processing and environmental data representation — Extensible 3D (X3D) — Part 2: Scene access interface (SAI); 2015 (2015). https://webstore.iec.ch/publication/23241

  33. ISO. Information technology — Computer graphics, image processing and environmental data representation — Extensible 3D (X3D) — Part 1: Architecture and base components; 2013 (2013). https://www.iso.org/standard/60760.html

  34. ISO. Information technology — Computer graphics and image processing — Extensible 3D (X3D) language bindings — Part 3: Part 3: C; under development under development. https://www.iso.org/standard/83751.html

  35. ISO. Information technology — Computer graphics and image processing — Extensible 3D (X3D) language bindings — Part 2: Java; 2006 (2006). https://www.iso.org/standard/38020.html

  36. ISO. Information technology — Computer graphics and image processing — Extensible 3D (X3D) language bindings — Part 1: ECMAScript; 2006 (2006). https://www.iso.org/standard/33915.html

  37. Peters, M., Wischniewski, S., Paul, G.E.: DHM data exchange protocols. In: Scataglini, S., Paul, G.E. (eds.) DHM and Posturography, pp. 663–670 (2019)

    Google Scholar 

  38. Peters, M., Quadrat, E., Nolte, A., et al.: Biomechanical digital human models: chances and challenges to expand ergonomic evaluation. In: International Conference on Human Systems Engineering and Design 2018 (2018)

    Google Scholar 

  39. Paul, G.E., Lee, W.C.: Interfacing Jack and Anybody: towards anthropometric musculoskeletal digital human modeling. In: Wang, X., Bubb, H. (eds.) Interfacing Jack and Anybody: Towards Anthropometric Musculoskeletal Digital Human Modeling (2011)

    Google Scholar 

  40. Wegner, D., Chiang, J., Kemmer, B., Lämkull, D., Roll, R.: Digital human modeling requirements and standardization. In: Digital Human Modeling Requirements and Standardization. SAE International400 Commonwealth Drive, Warrendale (2007)

    Google Scholar 

  41. Ehrig, R.M., Taylor, W.R., Duda, G.N., Heller, M.O.: A survey of formal methods for determining the centre of rotation of ball joints. J. Biomech. 39(15), 2798–2809 (2006). https://doi.org/10.1016/j.jbiomech.2005.10.002. PMID: 16293257

    Article  Google Scholar 

  42. DIN. Allgemeine Anforderungen an die Einrichtung anthropometrischer Datenbanken; 2013 (2013). https://www.din.de/de/mitwirken/normenausschuesse/naerg/veroeffentlichungen/wdc-beuth:din21:167441816

  43. DIN. Wesentliche Maße des menschlichen Körpers für die technische Gestaltung - Teil 1: Körpermaßdefinitionen und -messpunkte: ISO 7250-1; 2017 (2017). https://www.din.de/de/mitwirken/normenausschuesse/naerg/veroeffentlichungen/wdc-beuth:din21:280954281

  44. Mochimaru, M.: Standards and norms. In: Scataglini, S., Paul, G.E. (eds.) DHM and Posturography, pp. 659–661 (2019)

    Google Scholar 

  45. DIN. 3D-Scanverfahren für international kompatible anthropometrische Datenbanken - Teil 1: Prüfprotokoll für aus 3D-Scans extrahierte Körpermaße; 2019 (2019). https://www.din.de/de/mitwirken/normenausschuesse/naerg/veroeffentlichungen/wdc-beuth:din21:298746990

  46. Wu, G., Cavanagh, P.R.: ISB recommendations for standardization in the reporting of kinematic data. J Biomech 28(10), 1257–1261 (1995). https://doi.org/10.1016/0021-9290(95)00017-C

    Article  Google Scholar 

  47. Wu, G., van der Helm, F.C.T., Veeger, H.E.J., et al.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - Part II: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005). https://doi.org/10.1016/j.jbiomech.2004.05.042. PMID: 15844264

    Article  Google Scholar 

  48. Wu, G., Siegler, S., Allard, P., et al.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech. 35(4), 543–548 (2002). https://doi.org/10.1016/s0021-9290(01)00222-6

    Article  Google Scholar 

  49. VDI. Digitale Fabrik - Ergonomische Abbildung des Menschen in der Digitalen Fabrik. Berlin: Beuth Verlag; 2015 (2015). https://www.vdi.de/richtlinien/details/vdi-4499-blatt-4-digitale-fabrik-ergonomische-abbildung-des-menschen-in-der-digitalen-fabrik

  50. Zülch, G.: Ergonomische Abbildung des Menschen in der Digitalen Fabrik – Die neue VDI-Richtlinie 4499-4 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmidt, K., Schmidt, P., Schlenz, A. (2023). Challenges for Standardized Ergonomic Assessments by Digital Human Modeling. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2023. Lecture Notes in Computer Science, vol 14028. Springer, Cham. https://doi.org/10.1007/978-3-031-35741-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35741-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35740-4

  • Online ISBN: 978-3-031-35741-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics