Skip to main content

A Platform for Long-Term Analysis and Reporting of Sitting Posture

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14028))

Included in the following conference series:

  • 787 Accesses

Abstract

Worldwide, recent changes in the work environment affected workspace ergonomics conditions over long periods of time. This extended period of bad ergonomic conditions hindered the ability to maintain good posture, aggravating the postural challenges of the typical office worker that spends 15 h seated each day and leading to a surge of the prevalence of lower back and neck pain. Bad posture initially leads to muscle, disc, and joint pain, and can evolve to serious conditions. Therefore, the monitoring of spatial and temporal characteristics of the hip and back is of utmost importance for injury prevention. We developed an IoT platform that employs a sensor fusion array methods to collect specific postural information during long term usage. The collected data was used to assemble a Postural Dashboard, employing data visualization and Exploratory Data Analysis (EDA) to provide descriptive statistics data and allow the investigation of a user’s long-term postural patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cho, H., Choi, H.J., Lee, C.E., Sir, C.W.: Sitting posture prediction and correction system using arduino-based chair and deep learning model. In: 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA), pp. 98–102 (2019). https://doi.org/10.1109/SOCA.2019.00022

  2. Dunne, L.E., Walsh, P., Smyth, B., Caulfield, B.: Design and evaluation of a wearable optical sensor for monitoring seated spinal posture. In: 2006 10th IEEE International Symposium on Wearable Computers, pp. 65–68 (2006). https://doi.org/10.1109/ISWC.2006.286345

  3. Freburger, J., et al.: The rising prevalence of chronic low back pain. Arch. Intern. Med. 169(3), 251–258 (2009)

    Article  Google Scholar 

  4. Gleskova, H., Ishaku, A.A., Bednár, T., Hudec, R.: Optimization of all-textile capacitive sensor array for smart chair. IEEE Access 10, 48615–48621 (2022). https://doi.org/10.1109/ACCESS.2022.3171231

    Article  Google Scholar 

  5. Hu, Q., Tang, X., Tang, W.: A smart chair sitting posture recognition system using flex sensors and FPGA implemented artificial neural network. IEEE Sens. J. 20(14), 8007–8016 (2020). https://doi.org/10.1109/JSEN.2020.2980207

    Article  Google Scholar 

  6. Ishaku, A.A., et al.: Flexible force sensors embedded in office chair for monitoring of sitting postures. In: 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), pp. 1–3 (2019). https://doi.org/10.1109/FLEPS.2019.8792250

  7. Lee, B.W., Shin, H.: Feasibility study of sitting posture monitoring based on piezoresistive conductive film-based flexible force sensor. IEEE Sens. J. 16(1), 15–16 (2016). https://doi.org/10.1109/JSEN.2015.2480600

    Article  MathSciNet  Google Scholar 

  8. Li, C., et al.: Sagittal imbalance of the spine is associated with poor sitting posture among primary and secondary school students in China: a cross-sectional study. MC Musculoskelet. Disord. 23 (2022). Article number: 98. https://doi.org/10.1186/s12891-022-05021-5

  9. Martins, L., et al.: Intelligent chair sensor. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 383, pp. 182–191. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41013-0_19

    Chapter  Google Scholar 

  10. Meyer, J., Arnrich, B., Schumm, J., Troster, G.: Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens. J. 10(8), 1391–1398 (2010). https://doi.org/10.1109/JSEN.2009.2037330

    Article  Google Scholar 

  11. Mutlu, B., Krause, A., Forlizzi, J., Guestrin, C., Hodgins, J.: Robust, low-cost, non-intrusive sensing and recognition of seated postures. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, UIST 2007, pp. 149–158. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1294211.1294237

  12. Nguyen, U., et al.: Increasing prevalence of knee pain and symptomatic knee osteoarthritis. Ann. Intern. Med. 155(11), 725–732 (2011)

    Article  Google Scholar 

  13. de Pinho André, R., Diniz, P.H., Fuks, H.: Bottom-up investigation: human activity recognition based on feet movement and posture information. In: iWOAR 2017 (2017)

    Google Scholar 

  14. de Pinho André, R., Diniz, P.H., Fuks, H.: Investigating the relevance of sensor selection: recognition of ADLs based on feet movement and posture information. In: Sensor Devices 2018 (2018)

    Google Scholar 

  15. de Pinho André, R., Raposo, A., Fuks, H.: Using foot and knee movement and posture information to mitigate the probability of injuries in functional training. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11581, pp. 153–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22216-1_12

    Chapter  Google Scholar 

  16. Tan, H., Slivovsky, L., Pentland, A.: A sensing chair using pressure distribution sensors. IEEE/ASME Trans. Mechatron. 6(3), 261–268 (2001). https://doi.org/10.1109/3516.951364

    Article  Google Scholar 

  17. Wallace, I., et al.: Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl. Acad. Sci. U. S. A. 114(35), 9332–9336 (2017)

    Article  Google Scholar 

  18. Zheng, Y., Morrell, J.B.: Comparison of visual and vibrotactile feedback methods for seated posture guidance. IEEE Trans. Haptics 6(1), 13–23 (2013). https://doi.org/10.1109/TOH.2012.3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael de Pinho André .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

André, R.d.P., Fonseca, A., Yokoyama, K., Westfal, L., Laguardia, L., de Souza, M. (2023). A Platform for Long-Term Analysis and Reporting of Sitting Posture. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2023. Lecture Notes in Computer Science, vol 14028. Springer, Cham. https://doi.org/10.1007/978-3-031-35741-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35741-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35740-4

  • Online ISBN: 978-3-031-35741-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics