Skip to main content

A Multimodal Data Model for Simulation-Based Learning with Va.Si.Li-Lab

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2023)

Abstract

Simulation-based learning is a method in which learners learn to master real-life scenarios and tasks from simulated application contexts. It is particularly suitable for the use of VR technologies, as these allow immersive experiences of the targeted scenarios. VR methods are also relevant for studies on online learning, especially in groups, as they provide access to a variety of multimodal learning and interaction data. However, VR leads to a trade-off between technological conditions of the observability of such data and the openness of learner behavior. We present Va.Si.Li-Lab, a VR-L ab for Simulation-based Learn ing developed to address this trade-off. Va.Si.Li-Lab uses a graph-theoretical model based on hypergraphs to represent the data diversity of multimodal learning and interaction. We develop this data model in relation to mono- and multimodal, intra- and interpersonal data and interleave it with ISO-Space to describe distributed multiple documents from the perspective of their interactive generation. The paper adds three use cases to motivate the broad applicability of Va.Si.Li-Lab and its data model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an earlier approach to this concept, see [52].

  2. 2.

    VAnnotatoR ’s browser enables immersive visualization of multimedia information units. These include texts, images, and videos that can be mapped to linkable discourse referents as meaning representations of entities manifested in these information units that can themselves be manipulated as 3D objects.

  3. 3.

    This requirement is somewhat reminiscent of multimodal time-aligned network series introduced by [54, 56, 57], but goes beyond them, as will be shown by reference to hypergraphs.

  4. 4.

    We refer to the notion of directed hypergraphs of [28].

  5. 5.

    “[...] event-paths are trajectories created by motions.” [42, 12], although not every description of a motion involves a description of an event path [42, 17].

  6. 6.

    This can lead to redundancy in our model, since some of these attributes are explicitly modeled using hypergraph structures (see below), but this saves us from enumerating all the attributes that do not create redundancy.

  7. 7.

    For hyperwalks see [2, 18]; for directed hypergraphs see [5]; for directed hyperpaths see [28]. We refer to hyperpaths to map the linear structure of such events, and use anchoring arcs to map repeating vertices.

  8. 8.

    Here we leave ISO-Space by allowing multiple triggers for the same link. This is necessary, for example, to account for alignment between interlocutors.

  9. 9.

    TIMEX3 values according to ISO-TimeML [69] are an alternative here, but since we consider measurement operations using Va.Si.Li-Lab, we restrict ourselves to timestamps in this definition. We also deviate from ISO-Space 2.0 in that we refer to (s-)motions as entities that allow us to relate, e.g., the type or manner of motion and its temporal structure to (s-)event paths: the same path can then be related to different motion events. Since our task here is not to annotate spatial relations in utterances or texts, but to capture spatial relations using motion and behavioral data in Va.Si.Li-Lab, we take this route of adapting ISO-Space.

  10. 10.

    Of course, \(\sigma _v\) goes beyond the realm of ISO-Space.

References

  1. Abrami, G., Henlein, A., Kett, A., Mehler, A.: Text2scenevr: generating hypertexts with vannotator as a pre-processing step for text2scene systems. In: Proceedings of the 31st ACM Conference on Hypertext and Social Media, pp. 177–186 (2020). https://doi.org/10.1145/3372923.3404791

  2. Aksoy, S.G., Joslyn, C., Ortiz Marrero, C., Praggastis, B., Purvine, E.: Hypernetwork science via high-order hypergraph walks. EPJ Data Sci. 9(1), 1–34 (2020). https://doi.org/10.1140/epjds/s13688-020-00231-0

    Article  Google Scholar 

  3. Apel, S.B.: No more casebooks: using simulation-based learning to educate future family law practitioners. Fam. Court. Rev. 49(4), 700–710 (2011). https://doi.org/10.1111/j.1744-1617.2011.01406.x

    Article  Google Scholar 

  4. Atkinson, R.C., Shiffrin, R.M.: Human memory: a proposed system and its control processes. In: Psychology of Learning and Motivation, vol. 2, pp. 89–195. Elsevier (1968). https://doi.org/10.1016/S0079-7421(08)60422-3

  5. Ausiello, G., Laura, L.: Directed hypergraphs: introduction and fundamental algorithms–a survey. Theoret. Comput. Sci. 658, 293–306 (2017). https://doi.org/10.1016/j.tcs.2016.03.016

    Article  MathSciNet  MATH  Google Scholar 

  6. de Back, T.T., Tinga, A.M., Nguyen, P., Louwerse, M.M.: Benefits of immersive collaborative learning in CAVE-based virtual reality. Int. J. Educ. Technol. High. Educ. 17(1), 1–18 (2020). https://doi.org/10.1186/s41239-020-00228-9

    Article  Google Scholar 

  7. Back, T.T.D., Tinga, A.M., Louwerse, M.M.: Learning in immersed collaborative virtual environments: design and implementation. Interactive Learning Environments , 1–19 (2021). https://doi.org/10.1080/10494820.2021.2006238

  8. Baker, S.C., Wentz, R.K., Woods, M.M.: Using virtual worlds in education: second life® as an educational tool. Teach. Psychol. 36(1), 59–64 (2009). https://doi.org/10.1080/00986280802529079

    Article  Google Scholar 

  9. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983). https://doi.org/10.2307/2219775

  10. Barzilai, S., Zohar, A.: Epistemic thinking in action: evaluating and integrating online sources. Cogn. Instr. 30(1), 39–85 (2012). https://doi.org/10.1080/07370008.2011.636495

    Article  Google Scholar 

  11. Bildhauer, D.: Verteilte hierarchische Hyper-TGraphen: Definition und Implementation eines ausdrucksstarken Graphenkonzepts. Logos-Verlag (2012)

    Google Scholar 

  12. Bradley, P.: The history of simulation in medical education and possible future directions. Med. Educ. 40(3), 254–262 (2006). https://doi.org/10.1111/j.1365-2929.2006.02394.x

    Article  Google Scholar 

  13. Britt, M.A., Rouet, J.F., Braasch, J.L.: Documents as entities: Extending the situation model theory of comprehension. In: Britt, M.A., Goldmann, S.R., Rouet, J.F. (eds.) Reading-from words to multiple texts, pp. 161–179. Routledge (2012). https://doi.org/10.4324/9780203131268

  14. Britt, M.A., Rouet, J.F., Durik, A.M.: Literacy Beyond Text Comprehension: A Theory of Purposeful Reading. Routledge, New York (2018)

    Google Scholar 

  15. Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic relatedness. Comput. Linguist. 32(1), 13–47 (2006). https://doi.org/10.1162/coli.2006.32.1.13

    Article  MATH  Google Scholar 

  16. Chernikova, O., Heitzmann, N., Stadler, M., Holzberger, D., Seidel, T., Fischer, F.: Simulation-based learning in higher education: a meta-analysis. Rev. Educ. Res. 90(4), 499–541 (2020). https://doi.org/10.3102/0034654320933544

    Article  Google Scholar 

  17. Clark, R.E.: Learning from serious games? Arguments, evidence, and research suggestions. Educ. Technol. 47(3), 56–59 (2007). https://www.jstor.org/stable/44429512

  18. Contreras, I., Loeb, S., Yu, C.: Hyperwalk formulae for even and odd Laplacians in finite CW-hypergraphs. arXiv preprint arXiv:1708.07995 (2017). https://doi.org/10.48550/arXiv.1708.07995

  19. De Coninck, K., Valcke, M., Ophalvens, I., Vanderlinde, R.: Bridging the theory-practice gap in teacher education: The design and construction of simulation-based learning environments. Kohärenz in der Lehrerbildung: Theorien, Modelle und empirische Befunde, pp. 263–280 (2019). https://doi.org/10.1007/978-3-658-23940-4_17

  20. Devlin, K.: Logic and Information. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  21. Dieckmann, P., Friis, S.M., Lippert, A., Østergaard, D.: Goals, success factors, and barriers for simulation-based learning: a qualitative interview study in health care. Simul. Gaming 43(5), 627–647 (2012). https://doi.org/10.1177/1046878112439649

    Article  Google Scholar 

  22. Dodds, C., Heslop, P., Meredith, C.: Using simulation-based education to help social work students prepare for practice. Soc. Work. Educ. 37(5), 597–602 (2018). https://doi.org/10.1080/02615479.2018.1433158

    Article  Google Scholar 

  23. Drachsler, H., Goldhammer, F.: Learning analytics and eassessment—towards computational psychometrics by combining psychometrics with learning analytics. In: Burgos, D. (ed.) Radical Solutions and Learning Analytics. LNET, pp. 67–80. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4526-9_5

    Chapter  Google Scholar 

  24. Drey, T., et al.: Towards collaborative learning in virtual reality: a comparison of co-located symmetric and asymmetric pair-learning. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. CHI 2022 (2022). https://doi.org/10.1145/3491102.3517641

  25. Engel, J., Göhlich, M., Möller, E.: Interaction, subalternity, and marginalisation: an empirical study on glocalised realities in the classroom. Diaspora, Indig. Minor. Educ. 13(1), 40–53 (2019). https://doi.org/10.1080/15595692.2018.1490717

    Article  Google Scholar 

  26. Fedor: gecko984/supervenn: add some tests for supervenn(), September 2020. https://doi.org/10.5281/zenodo.4016732

  27. Frasson, C., Blanchard, E.G.: Simulation-based learning. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning, pp. 3076–3080. Springer, US, Boston, MA (2012). https://doi.org/10.1007/978-1-4419-1428-6_129

  28. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discret. Appl. Math. 42(2–3), 177–201 (1993). https://doi.org/10.1016/0166-218X(93)90045-P

    Article  MathSciNet  MATH  Google Scholar 

  29. Gibson, J.J.: The theory of affordances. Hilldale, USA 1(2), 67–82 (1977)

    Google Scholar 

  30. Gilbert, R., Low, P.: Discourse and power in education: analysing institutional processes in schools. Aust. Educ. Res. 21(3), 1–24 (1994). https://doi.org/10.1007/BF03219572

    Article  Google Scholar 

  31. Goldin-Meadow, S., Brentari, D.: Gesture, sign, and language: the coming of age of sign language and gesture studies. Behav. Brain Sci. 40, e46 (2017). https://doi.org/10.1017/S0140525X15001247

    Article  Google Scholar 

  32. Goldman, S.R., Braasch, J.L., Wiley, J., Graesser, A.C., Brodowinska, K.: Comprehending and learning from internet sources: processing patterns of better and poorer learners. Read. Res. Q. 47(4), 356–381 (2012). https://doi.org/10.1002/RRQ.027

    Article  Google Scholar 

  33. Goldman, S.R., Brand-Gruwel, S.: Learning from multiple sources in a digital society. In: International Handbook of the Learning Sciences, pp. 86–95. Routledge (2018). https://doi.org/10.4324/9781315617572

  34. Helsper, W.: Antinomien und paradoxien im professionellen handeln. Handbuch Professionsentwicklung 1, 50–62 (2016)

    Google Scholar 

  35. Hemati, W., Uslu, T., Mehler, A.: TextImager: a distributed UIMA-based system for NLP. In: Proceedings of the COLING 2016 System Demonstrations. Federated Conference on Computer Science and Information Systems (2016). https://aclanthology.org/C16-2013

  36. Herbelot, A., Baroni, M.: High-risk learning: acquiring new word vectors from tiny data. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 304–309. Association for Computational Linguistics, Copenhagen, Denmark, September 2017. https://doi.org/10.18653/v1/D17-1030

  37. Hirst, G., Mohammad, S.: Semantic distance measures with distributional profiles of coarse-grained concepts. In: Mehler, A., Kühnberger, K.U., Lobin, H., Lüngen, H., Storrer, A., Witt, A. (eds.) Modeling, Learning and Processing of Text Technological Data Structures. Studies in Computational Intelligence, Springer, Berlin/New York (2011). https://doi.org/10.1007/978-3-642-22613-7_4

  38. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput. Human Interact. 7(2), 174–196 (2000). https://doi.org/10.1145/353485.353487

    Article  Google Scholar 

  39. Hollan, J.D., Hutchins, E.L., Weitzman, L.: STEAMER: an interactive inspectable simulation-based training system. AI Mag. 5(2), 15–15 (1984). https://doi.org/10.1609/aimag.v5i2.434

    Article  Google Scholar 

  40. Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spacy: Industrial-strength natural language processing in python (2020). https://doi.org/10.5281/zenodo.1212303

  41. Inoue, Y.: Virtual reality learning environments. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning, pp. 3407–3410. Springer, US, Boston, MA (2012). https://doi.org/10.1007/978-1-4419-1428-6_651

  42. ISO: ISO 24617–7 - language resource management - semantic annotation framework - part 7: Spatial information. https://www.iso.org/standard/76442.html (2020)

  43. Kerres, M., Mulders, M., Buchner, J.: Virtuelle realität: Immersion als erlebnisdimension beim lernen mit visuellen informationen. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung 47, 312–330 (2022). https://doi.org/10.21240/mpaed/47/2022.04.15.X

  44. Kintsch, W.: Comprehension. A Paradigm for Cognition. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  45. Krishnaswamy, N., Pustejovsky, J.: Affordance embeddings for situated language understanding. Front. Artif. Intell. 5 (2022). https://doi.org/10.3389/frai.2022.774752

  46. Lester, J.C., Stone, B.A., Stelling, G.D.: Lifelike pedagogical agents for mixed-initiative problem solving in constructivist learning environments. User Model. User-Adap. Inter. 9, 1–44 (1999). https://doi.org/10.1023/A:1008374607830

    Article  Google Scholar 

  47. List, A., Alexander, P.A.: Toward an integrated framework of multiple text use. Educ. Psychol. 54(1), 20–39 (2019). https://doi.org/10.1080/00461520.2018.1505514

    Article  Google Scholar 

  48. Lyotard, J.F.: The postmodern condition. Mod. Critic. Concepts. 4, 161–177 (1999)

    Google Scholar 

  49. Markic, S., Abels, S.: Heterogeneity and diversity: a growing challenge or enrichment for science education in German schools? Eurasia J. Math. Sci. Technol. Educ. 10(4), 271–283 (2014). https://doi.org/10.12973/eurasia.2014.1082a

  50. Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. Freeman, New York (1982). https://doi.org/10.7551/mitpress/9780262514620.001.0001

  51. Mehler, A., Abrami, G., Spiekermann, C., Jostock, M.: VAnnotatoR: A framework for generating multimodal hypertexts. In: Proceedings of the 29th ACM Conference on Hypertext and Social Media, pp. 150–154. HT 2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3209542.3209572

  52. Mehler, A., Hemati, W., Welke, P., Konca, M., Uslu, T.: Multiple texts as a limiting factor in online learning: Quantifying (dis-)similarities of knowledge networks. Front. Educ. 5 (2020). https://doi.org/10.3389/feduc.2020.562670

  53. Mehler, A., Lücking, A.: A structural model of semiotic alignment: The classification of multimodal ensembles as a novel machine learning task. In: Proceedings of IEEE Africon (2009). https://doi.org/10.1109/AFRCON.2009.5308098

  54. Mehler, A., Lücking, A.: A graph model of alignment in multilog. In: Proceedings of IEEE Africon (2011)

    Google Scholar 

  55. Mehler, A., Lücking, A.: Pathways of alignment between gesture and speech: assessing information transmission in multimodal ensembles. In: Giorgolo, G., Alahverdzhieva, K. (eds.) Proceedings of the International Workshop on Formal and Computational Approaches to Multimodal Communication under the auspices of ESSLLI 2012 (2012)

    Google Scholar 

  56. Mehler, A., Lücking, A., Menke, P.: Assessing cognitive alignment in different types of dialog by means of a network model. Neural Netw. 32, 159–164 (2012). https://doi.org/10.1016/j.neunet.2012.02.013

    Article  Google Scholar 

  57. Mehler, A., Lücking, A., Weiß, P.: A network model of interpersonal alignment. Entropy 12(6), 1440–1483 (2010). https://doi.org/10.3390/e12061440

    Article  Google Scholar 

  58. Mehlmann, G., Häring, M., Janowski, K., Baur, T., Gebhard, P., André, E.: Exploring a model of gaze for grounding in multimodal HRI. In: Proceedings of the 16th International Conference on Multimodal Interaction, pp. 247–254. ICMI 2014 (2014). https://doi.org/10.1145/2663204.2663275

  59. Molerov, D., Zlatkin-Troitschanskaia, O., Nagel, M.T., Brückner, S., Schmidt, S., Shavelson, R.J.: Assessing university students’ critical online reasoning ability: a conceptual and assessment framework with preliminary evidence. In: Frontiers in Education, p. 258. Frontiers (2020). https://doi.org/10.3389/feduc.2020.577843

  60. Nagel, M.T., Schäfer, S., et al.: How do university students’ web search behavior, website characteristics, and the interaction of both influence students’ critical online reasoning? In: Frontiers in Education, vol. 5, p. 565062. Frontiers Media, SA (2020). https://doi.org/10.25358/openscience-5542

  61. Nur Affendy, N.M., Ajune Wanis, I.: A review on collaborative learning environment across virtual and augmented reality technology. IOP Conf. Ser. Mater. Sci. Eng. 551(1), 012050 (2019). https://doi.org/10.1088/1757-899X/551/1/012050

    Article  Google Scholar 

  62. Oertel, C., Jonell, P., Kontogiorgos, D., Mora, K.F., Odobez, J.M., Gustafson, J.: Towards an engagement-aware attentive artificial listener for multi-party interactions. Front. Robot. AI 8 (2021). https://doi.org/10.3389/frobt.2021.555913

  63. Park, S.-B., Jung, J.J., You, E.S.: Storytelling of collaborative learning system on augmented reality. In: Camacho, D., Kim, S.-W., Trawiński, B. (eds.) New Trends in Computational Collective Intelligence. SCI, vol. 572, pp. 139–147. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10774-5_13

    Chapter  Google Scholar 

  64. Perfetti, C.A., Rouet, J.F., Britt, M.A.: Toward a theory of documents representation. In: van Oostendorp, H., Goldman, S.R. (eds.) The construction of mental representations during reading, pp. 99–122. Erlbaum, Mahwah, NJ (1999). https://www.taylorfrancis.com/chapters/mono/10.4324/9781410603050-9/toward-theory-documents-representation-herre-van-oostendorp-susan-goldman

  65. Pickering, M.J., Garrod, S.: Toward a mechanistic psychology of dialogue. Behav. Brain Sci. 27, 169–226 (2004). https://doi.org/10.1017/S0140525X04000056

    Article  Google Scholar 

  66. Prasolova-Førland, E., McCallum, S., Estrada, J.G.: Collaborative learning in VR for cross-disciplinary distributed student teams. In: 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 320–325 (2021). https://doi.org/10.1109/VRW52623.2021.00064

  67. Pustejovsky, J.: Dynamic event structure and habitat theory. In: Proceedings of the 6th International Conference on Generative Approaches to the Lexicon (GL2013), pp. 1–10 (2013). https://aclanthology.org/W13-5401

  68. Pustejovsky, J.: ISO-Space: Annotating static and dynamic spatial information. In: Handbook of Linguistic Annotation, pp. 989–1024 (2017). https://doi.org/10.1007/978-94-024-0881-2_37

  69. Pustejovsky, J., Lee, K., Bunt, H., Romary, L.: ISO-TimeML: an international standard for semantic annotation. In: LREC 2010, pp. 394–397 (2010). https://aclanthology.org/L10-1027/

  70. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356 (2022). https://doi.org/10.48550/arXiv.2212.04356

  71. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. KR. 92, 165–176 (1992). https://doi.org/10.5555/3087223.3087240

  72. Rieger, B.B.: Semiotic cognitive information processing: Learning to understand discourse. a systemic model of meaning constitution. In: Kühn, R., Menzel, R., Menzel, W., Ratsch, U., Richter, M.M., Stamatescu, I.O. (eds.) Adaptivity and Learning. An Interdisciplinary Debate, pp. 347–403. Springer, Berlin (2003). https://doi.org/10.1007/978-3-662-05594-6_24

  73. Rouet, J.F., Britt, M.A., Potocki, A.: Multiple-text comprehension. In: Dunlosky, J., Rawson, K.A. (eds.) The Cambridge Handbook of Cognition and Education, pp. 356–380. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108235631.015

  74. Saedi, C., Branco, A., Rodrigues, J., Silva, J.: Wordnet embeddings. In: Proceedings of the third workshop on representation learning for NLP, pp. 122–131 (2018). https://doi.org/10.18653/v1/W18-3016

  75. Schmid, H.J.: A blueprint of the entrenchment-and-conventionalization model. Yearbook German Cogn. Linguist. Assoc. 3(1), 3–26 (2015). https://doi.org/10.1007/978-3-642-22613-7_4

    Article  Google Scholar 

  76. Schmidt, S., et al.: Undergraduate students’ critical online reasoning–process mining analysis. Front. Psychol. 11, 576273 (2020). https://doi.org/10.3389/fpsyg.2020.576273

    Article  Google Scholar 

  77. Scioni, E., Hübel, N., et al.: Hierarchical hypergraph for knowledge-centric robot systems: a composable structural meta model and its domain specific language NPC4. JOSER: J. Softw. Eng. Robot. 7(11), 55–74 (2016). https://hdl.handle.net/10446/87779

  78. Sedlák, M., Šašinka, Č., Stachoň, Z., Chmelík, J., Doležal, M.: Collaborative and individual learning of geography in immersive virtual reality: an effectiveness study. PLOS ONE. 17(10), 1–18 (2022). https://doi.org/10.1371/journal.pone.0276267

  79. Spiekermann, C., Abrami, G., Mehler, A.: VAnnotatoR: a gesture-driven annotation framework for linguistic and multimodal annotation. In: Pustejovsky, J., van der Sluis, I. (eds.) Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). AREA, European Language Resources Association (ELRA), Paris, France (2018)

    Google Scholar 

  80. Spring, J.: Economization of Education: Human Capital, Global Corporations, Skills-based Schooling. Routledge (2015)

    Google Scholar 

  81. Stavroulia, K.-E., Lanitis, A.: On the potential of using virtual reality for teacher education. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2017. LNCS, vol. 10295, pp. 173–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58509-3_15

    Chapter  Google Scholar 

  82. Streeck, J.: Gesture as communication I: its coordination with gaze and speech. Commun. Monogr. 60(4), 275–299 (1993). https://doi.org/10.1080/03637759309376314

    Article  Google Scholar 

  83. Tataru, M., Berzescu, S., Vert, S., Mihaescu, V., Stamatoiu, R., Vasiu, R.: Designing applications for collaborative learning in virtual reality. In: 2022 International Symposium on Electronics and Telecommunications (ISETC), pp. 1–4 (2022). https://doi.org/10.1109/ISETC56213.2022.10010175

  84. Wineburg, S., Breakstone, J., McGrew, S., Smith, M.D., Ortega, T.: Lateral reading on the open internet: a district-wide field study in high school government classes. J. Educ. Psychol. 893–909 (2022). https://doi.org/10.1037/edu0000740

  85. Wineburg, S., McGrew, S., Breakstone, J., Ortega, T.: Evaluating information: the cornerstone of civic online reasoning (2016). http://purl.stanford.edu/fv751yt5934

  86. Xu, P., et al.: Optimizing deeper transformers on small datasets. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International, Joint Conference on NLP, pp. 2089–2102 (2021). https://doi.org/10.18653/v1/2021.acl-long.163

  87. Ziv, A., Small, S.D., Wolpe, P.R.: Patient safety and simulation-based medical education. Med. Teach. 22(5), 489–495 (2000). https://doi.org/10.1080/01421590050110777

    Article  Google Scholar 

  88. Zlatkin-Troitschanskaia, O., et al.: Performance assessment and digital training framework for young professionals’ generic and domain-specific online reasoning in law, medicine and teacher practice. J. Supranatl. Polic. Educ. 13, 9–36 (2021). https://doi.org/10.15366/jospoe2021.13.001

  89. Zlatkin-Troitschanskaia, O., Beck, K., Fischer, J., Braunheim, D., Schmidt, S., Shavelson, R.J.: The role of students’ beliefs when critically reasoning from multiple contradictory sources of information in performance assessments. Front. Psychol. 11, 2192 (2020). https://doi.org/10.3389/fpsyg.2020.02192

    Article  Google Scholar 

Download references

Acknowledgement

We especially thank all participants involved in the experiments with the help of Va.Si.Li-Lab for their support. This work was co-funded by Bundesministerium für Bildung und Forschung (BMBF), grant 01JD1906B, as well as the “Digital Teaching and Learning Lab” (DigiTeLL) at the Goethe University Frankfurt. Furthermore, this work was supported by the Deutsche Forschungsgemeinschaft (DFG) [grant numbers ME 2746/10-1 and LU 2114/2-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehler, A. et al. (2023). A Multimodal Data Model for Simulation-Based Learning with Va.Si.Li-Lab. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2023. Lecture Notes in Computer Science, vol 14028. Springer, Cham. https://doi.org/10.1007/978-3-031-35741-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35741-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35740-4

  • Online ISBN: 978-3-031-35741-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics