Abstract
Intelligent interfaces play an important role in the harmony and naturalness of human-computer interaction. The purpose of this paper is to investigate the hot spots and trends in the field of intelligent human-computer interaction interfaces (IHCII) from 2010 to 2022 by bibliometric analysis. Author, citation, co-citation, and keyword co-occurrence networks were visualized using bibliometrics. The analysis included 1,784 articles and 80,964 cited references. The results showed that emotion recognition and EEG are at the forefront of IHCII research. China leads in publications (359), but the US dominates in citations (7,007 times). The Centre National de la Recherche Scient fique is the most productive organization. IEEE Access is the journal with the most papers on IHCII. The keyword co-occurrence analysis shows that “user experience”, “virtual reality”, “eye tracking”, “emotion recognition”, “big data”, and “mental workload” may be the research hotspots in this field. For researchers, this paper proposes that interface design features are a research gap in the field of IHCII.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Nielsen, J.: User interface directions for the Web. Commun. ACM. 42, 65–72 (1999). https://doi.org/10.1145/291469.291470
Interface Design for the Command-control Module Based on Adaptive Interaction Technology
Laureano-Cruces, A.L., Sánchez-Guerrero, L., Ramírez-Rodríguez, J., Ramírez-Laureano, E.: Intelligent interfaces: pedagogical agents and virtual humans. Int. J. Intell. Sci. 12, 57–78 (2022). https://doi.org/10.4236/ijis.2022.123005
Lim, Y., et al.: Avionics human-machine interfaces and interactions for manned and unmanned aircraft. Prog. Aeosp. Sci. 102, 1–46 (2018). https://doi.org/10.1016/j.paerosci.2018.05.002
Van Velsen, L., Van Der Geest, T., Klaassen, R., Steehouder, M.: User-centered evaluation of adaptive and adaptable systems: a literature review. Knowl. Eng. Rev. 23, 261–281 (2008). https://doi.org/10.1017/S0269888908001379
Ulahannan, A., Jennings, P., Oliveira, L., Birrell, S.: Designing an adaptive interface: using eye tracking to classify how information usage changes over time in partially automated vehicles. IEEE Access 8, 16865–16875 (2020). https://doi.org/10.1109/ACCESS.2020.2966928
Wang, Z., et al.: The role of user-centered AR instruction in improving novice spatial cognition in a high-precision procedural task. Adv. Eng. Inform. 47, 101250 (2021). https://doi.org/10.1016/j.aei.2021.101250
Karpov, A.A., Yusupov, R.M.: Multimodal interfaces of human-computer interaction. Her. Russ. Acad. Sci. 88, 67–74 (2018). https://doi.org/10.1134/S1019331618010094
Dibeklioğlu, H., Surer, E., Salah, A.A., Dutoit, T.: Behavior and usability analysis for multimodal user interfaces. J. Multimodal User Interfaces 15(4), 335–336 (2021). https://doi.org/10.1007/s12193-021-00372-0
Wang, M., et al.: Fusing stretchable sensing technology with machine learning for human-machine interfaces. Adv. Funct. Mater. 31, 2008807 (2021). https://doi.org/10.1002/adfm.202008807
Tan, H., Sun, J., Wenjia, W., Zhu, C.: User experience & usability of driving: a bibliometric analysis of 2000–2019. Int. J. Hum. Comput. Interact. 37, 297–307 (2021). https://doi.org/10.1080/10447318.2020.1860516
Hassenzahl, M., Diefenbach, S., Göritz, A.: Needs, affect, and interactive products – facets of user experience. Interact. Comput. 22, 353–362 (2010). https://doi.org/10.1016/j.intcom.2010.04.002
Teyssier, M., Bailly, G., Pelachaud, C., Lecolinet, E.: Conveying emotions through device-initiated touch. IEEE Trans. Affect. Comput. 13, 1477–1488 (2022). https://doi.org/10.1109/TAFFC.2020.3008693
Ferguson, C., van den Broek, E.L., van Oostendorp, H.: On the role of interaction mode and story structure in virtual reality serious games. Comput. Educ. 143, 103671 (2020). https://doi.org/10.1016/j.compedu.2019.103671
Liu, C.-C., Liao, M.-G., Chang, C.-H., Lin, H.-M.: An analysis of children’ interaction with an AI chatbot and its impact on their interest in reading. Comput. Educ. 189, 104576 (2022). https://doi.org/10.1016/j.compedu.2022.104576
Conati, C., Lallé, S., Rahman, M.A., Toker, D.: Comparing and combining interaction data and eye-tracking data for the real-time prediction of user cognitive abilities in visualization tasks. ACM Trans. Interact. Intell. Syst. 10, 12:1–12:41 (2020). https://doi.org/10.1145/3301400
Zhang, T., Li, S., Chen, B., Yuan, H., Chen, C.L.P.: AIA-Net: adaptive interactive attention network for text–audio emotion recognition. IEEE Trans. Cybern. 1–13 (2022). https://doi.org/10.1109/TCYB.2022.3195739
Ayari, N., Abdelkawy, H., Chibani, A., Amirat, Y.: Hybrid model-based emotion contextual recognition for cognitive assistance services. IEEE Trans. Cybern. 52, 3567–3576 (2022). https://doi.org/10.1109/TCYB.2020.3013112
Berrezueta-Guzman, J., Pau, I., Martín-Ruiz, M.-L., Máximo-Bocanegra, N.: Smart-home environment to support homework activities for children. IEEE Access 8, 160251–160267 (2020). https://doi.org/10.1109/ACCESS.2020.3020734
Lv, Z.: Virtual reality in the context of Internet of Things. Neural Comput. Appl. 32(13), 9593–9602 (2019). https://doi.org/10.1007/s00521-019-04472-7
Wang, Q., Yang, S., Liu, M., Cao, Z., Ma, Q.: An eye-tracking study of website complexity from cognitive load perspective. Decis. Support Syst. 62, 1 (2014). https://doi.org/10.1016/j.dss.2014.02.007
Pillai, P., Balasingam, B., Kim, Y.H., Lee, C., Biondi, F.: Eye-gaze metrics for cognitive load detection on a driving simulator. IEEE-ASME Trans. Mechatron. 27, 2134–2141 (2022). https://doi.org/10.1109/TMECH.2022.3175774
Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affective Comput. 5, 327–339 (2014). https://doi.org/10.1109/TAFFC.2014.2339834
Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 6 (2016)
Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019). https://doi.org/10.1109/ACCESS.2019.2953499
Parasuraman, R., Manzey, D.H.: Complacency and bias in human use of automation: an attentional integration. Hum Factors 52, 381–410 (2010). https://doi.org/10.1177/0018720810376055
Small, H.: Co-citation in the scientific literature: a new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 24, 265–269 (1973). https://doi.org/10.1002/asi.4630240406
Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31, 39–58 (2009). https://doi.org/10.1109/TPAMI.2008.52
Katsigiannis, S., Ramzan, N.: DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 22, 98–107 (2018). https://doi.org/10.1109/JBHI.2017.2688239
Poria, S., Cambria, E., Bajpai, R., Hussain, A.: A review of affective computing: from unimodal analysis to multimodal fusion. Information Fusion. 37, 98–125 (2017). https://doi.org/10.1016/j.inffus.2017.02.003
Guo, F., Li, F., Lv, W., Liu, L., Duffy, V.G.: Bibliometric analysis of affective computing researches during 1999–2018. Int. J. Hum. Comput. Interact. 36, 801–814 (2020). https://doi.org/10.1080/10447318.2019.1688985
Wu, D., Xu, Y., Lu, B.-L.: Transfer learning for EEG-based brain-computer interfaces: a review of progress made since 2016. IEEE Trans. Cogn. Dev. Syst. 14, 4–19 (2022). https://doi.org/10.1109/TCDS.2020.3007453
Gunes, H., Schuller, B.: Categorical and dimensional affect analysis in continuous input: current trends and future directions. Image Vis. Comput. 31, 120–136 (2013). https://doi.org/10.1016/j.imavis.2012.06.016
Kothe, C.A., Makeig, S.: BCILAB: a platform for brain–computer interface development. J. Neural Eng. 10, 056014 (2013). https://doi.org/10.1088/1741-2560/10/5/056014
Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3, 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15
Huang, M., Zhu, X., Gao, J.: Challenges in building intelligent open-domain dialog systems. ACM Trans. Inf. Syst. 38, 21 (2020). https://doi.org/10.1145/3383123
Jiang, Y., Li, W., Hossain, M.S., Chen, M., Alelaiwi, A., Al-Hammadi, M.: A snapshot research and implementation of multimodal information fusion for data-driven emotion recognition. Inf. Fusion. 53, 209–221 (2020). https://doi.org/10.1016/j.inffus.2019.06.019
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243
Mehmood, R.M., Du, R., Lee, H.J.: Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors. IEEE Access 5, 14797–14806 (2017). https://doi.org/10.1109/ACCESS.2017.2724555
Atkinson, J., Campos, D.: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 47, 35–41 (2016). https://doi.org/10.1016/j.eswa.2015.10.049
Mustaqeem, K.S.: Optimal feature selection based speech emotion recognition using two-stream deep convolutional neural network. Int. J. Intell. Syst. 36, 5116–5135 (2021). https://doi.org/10.1002/int.22505
Chen, C.: Searching for intellectual turning points: progressive knowledge domain visualization. Proc. Natl. Acad. Sci. 101, 5303–5310 (2004). https://doi.org/10.1073/pnas.0307513100
Kleinsmith, A., Bianchi-Berthouze, N.: Affective body expression perception and recognition: a survey. IEEE Trans. Affect. Comput. 4, 15–33 (2013). https://doi.org/10.1109/T-AFFC.2012.16
Liu, W., Zheng, W.-L., Lu, B.-L.: Emotion Recognition Using Multimodal Deep Learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 521–529. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46672-9_58
Dzedzickis, A., Kaklauskas, A., Bucinskas, V.: Human emotion recognition: review of sensors and methods. Sensors 20, 592 (2020). https://doi.org/10.3390/s20030592
Acknowledgments
This work was supported by National Natural Science Foundation of Anhui Province (grant number 2208085MG183), the Key Project for Natural Science Fund of Colleges in Anhui Province (grant numbers KJ2021A0502), and the Project for Social Science Innovation and Development in Anhui Province (grant numbers 2021CX075). Further, we thank the editor and anonymous reviewers for their valuable comments and advice.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Cao, Y., Liu, Y., Hu, X. (2023). Intelligent Human-Computer Interaction Interface: A Bibliometric Analysis of 2010–2022. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2023. Lecture Notes in Computer Science, vol 14029. Springer, Cham. https://doi.org/10.1007/978-3-031-35748-0_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-35748-0_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35747-3
Online ISBN: 978-3-031-35748-0
eBook Packages: Computer ScienceComputer Science (R0)