Skip to main content

Prototyping of Haptic Datagloves for Deafblind People

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2023)

Abstract

Modern haptic gloves incorporate wearable technologies employing sensor and actuator arrays with a power supply and electronics for haptic data acquisition and processing to support human-computer interaction in different application domains. This paper discusses the prototyping process of specialized haptic Datagloves that realize remote two-way communication for the deafblind. The research aims to design and develop a haptic Dataglove system as a human-computer interface that supports the independence of the deafblind. The employed communication approach is based on the Malossi alphabet with minimal adjustments that enable its use in mobile settings. The implemented input/output method reduces the complexity of character spelling for the deafblind by touch sensitive pads and haptic feedback actuators embedded in the Datagloves. As a result, messages can be i) transmitted by simple tapping on the sensitive touch pads with the thumb of the same hand and ii) received through the haptic actuators on the other hand either simultaneously or consecutively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandler, W., Lillo-Martin, D.: Sign Language and Linguistic Universals. Cambridge University Press (2006)

    Google Scholar 

  2. Mesch, J.: Tactile signing with one-handed perception. Sign Lang. Stud. 13(2), 238–263 (2013)

    Article  Google Scholar 

  3. Chang, C. -M., Sanches, F., Gao, G., Johnson, S., Liarokapis, M.: An Adaptive, Affordable, Humanlike Arm Hand System for Deaf and DeafBlind Communication with the American Sign Language. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, pp. 871–878 (2022). https://doi.org/10.1109/IROS47612.2022.9982052

  4. Duvernoy, B., et al.: HaptiComm: a touch-mediated communication device for deafblind individuals. IEEE Robot. Autom. Lett. 8(4), 2014–2021 (2023). https://doi.org/10.1109/LRA.2023.3241758

    Article  Google Scholar 

  5. Raavi, R., Kanev, K., Hung, P.C.K.: Integration of optical and data gloves input for improved sign language analysis and interpretation through machine learning. In: The 8th International Symposium toward the Future of Advanced Research in Shizuoka University, Japan, p. 52. (2022)

    Google Scholar 

  6. Kanev, K., Mimura, H., Hung, P.C.K.: Data gloves for hand and finger motion interactions. In: Lee, N. (ed.) Encyclopedia of Computer Graphics and Games, pp. 1–4. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-319-08234-9_510-1

    Chapter  Google Scholar 

  7. Owada, S.S., Sugimura, H., Isshiki, M.: Toddler’s hand motion acquisition with hand-made data glove. In: 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), Osaka, Japan, pp. 96–97 (2022)

    Google Scholar 

  8. Gelsomini, F., et al.: Communicating with humans and robots: a motion tracking data glove for enhanced support of deafblind. In: 55th Hawaii International Conference on System Sciences, United States, 9 p. (2022)

    Google Scholar 

  9. Caporusso, N.: A wearable Malossi alphabet interface for deafblind people. In: Proceedings of the Working Conference on Advanced Visual Interfaces (AVI ‘08). Association for Computing Machinery, New York, NY, USA, pp. 445–448 (2008). https://doi.org/10.1145/1385569.1385655

  10. Gollner, U., Bieling, T., Joost, G.: Mobile Lorm glove. In: Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction. ACM, New York, NY, USA, pp. 127–130 (2012)

    Google Scholar 

  11. Khambadkar, V., Folmer, E.: A tactile-proprioceptive communication aid for users who are deafblind. In: 2014 IEEE Haptics Symposium (HAPTICS), Houston, TX, USA, pp. 239–245 (2014). https://doi.org/10.1109/HAPTICS.2014.6775461

  12. Choudhary, T., Kulkarni, S., Reddy, P.: A Braille-based mobile communication and translation glove for deafblind people. In: 2015 International Conference on Pervasive Computing (ICPC), Pune, India, pp. 1–4 (2015). https://doi.org/10.1109/PERVASIVE.2015.7087033

  13. Lee, B.G., Lee, S.M.: Smart wearable hand device for sign language interpretation system with sensors fusion. IEEE Sens. J. 18(3), 1224–1232 (2018). https://doi.org/10.1109/jsen.2017.2779466

    Article  Google Scholar 

  14. Navaitthiporn, N., Rithcharung, P., Hattapath, P., Pintavirooj, C.: Intelligent glove for sign language communication. In: 2019 12th Biomedical Engineering International Conference (BMEiCON), 4 p. (2019). https://doi.org/10.1109/bmeicon47515.2019.8990293

  15. Giulia, C., Chiara, D.V., Esmailbeigi, H.: GLOS: GLOve for Speech Recognition. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 3319–3322 (2019). https://doi.org/10.1109/EMBC.2019.8857927

  16. Ozioko, O., Dahiya, R.: Smart tactile gloves for haptic interaction, communication, and rehabilitation. Adv. Intell. Syst. 4(2), 2100091-1-22 (2021)

    Google Scholar 

  17. Suzuki, K., et al.: Rapid-response widely stretchable sensor of aligned MWCNT/elastomer composites for human motion detection. ACS Sens. 1(6), 817–825 (2016)

    Article  Google Scholar 

  18. Gelsomini, F., et al.: Specialized CNT-based sensor framework for advanced motion tracking. In: The 54th Hawaii International Conference on System Sciences (HICSS-54), Symposium: Computing in Companion Robots and Smart Toys, Grand Wailea, Maui, Hawaii, 7–10 Jan (2021). https://doi.org/10.24251/HICSS.2021.231

  19. Demoe, M., Uribe-Quevedo, A., Salgado, A.L., Mimura, H., Kanev, K., Hung, P.C.K.: Exploring data glove and robotics hand exergaming: lessons learned. In: IEEE 8th International Conference on Serious Games and Applications for Health, Vancouver, Canada, pp. 1–8 (2020)

    Google Scholar 

  20. Salgado, A.: User experience aspects in wearable multi-device applications designed for health systems: lessons learned. In: The 6th International Symposium on Biomedical Engineering, Japan, 2 p. (2022)

    Google Scholar 

  21. Caporusso, N., Biasi, L., Cinquepalmi, G., Trotta, G.F., Brunetti, A., Bevilacqua, V.: A wearable device supporting multiple touch- and gesture-based languages for the deaf-blind. In: Ahram, T., Falcão, C. (eds.) AHFE 2017. AISC, vol. 608, pp. 32–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60639-2_4

    Chapter  Google Scholar 

  22. Takeda, R., Nakamura, A., Kanev, K.: Development of a haptics glove for communication. The Institute of Electronics, Information and Communication Engineers (IEICE), Technical Report ED2022-29, CPM2022-54, LQE2022-62(2022-11), Japan, 6 p. (2022)

    Google Scholar 

Download references

Acknowledgments

The research and development related to this work was partially supported by JSPS KAKENHI Grant Number JP22K12125 and funding for Cooperative Research at the Research Center for Biomedical Engineering and the Research Institute of Electronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. K. Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hung, P.C.K., Kanev, K., Nakamura, A., Takeda, R., Mimura, H., Kimura, M. (2023). Prototyping of Haptic Datagloves for Deafblind People. In: Barolli, L. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing . IMIS 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-031-35836-4_29

Download citation

Publish with us

Policies and ethics