Skip to main content

Examining Simulated Agricultural Tasks Using an Arm-Support Exoskeleton

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2023)

Abstract

Agricultural work requires physical labor and often entails repetitive movements of the upper extremities, which can result in musculoskeletal disorders. The purpose of this study was to assess the impact of utilizing an arm-support exoskeleton (ASE) on physical demands and task performance in simulated agricultural conditions. A group of 21 participants used a commercial arm-support exoskeleton to carry out brief simulated agricultural tasks at different height conditions, and the following outcomes were measured: muscle activity (%MVC) of the upper body muscles, task completion time, and ratings of perceived exertion (RPE). The results indicated that while the use of the ASE significantly reduced shoulder muscle activity at the shoulder and overhead work heights, participants spent more time performing the tasks and perceived higher exertion levels. In conclusion, ASE use has the potential as a new intervention for tasks that require arm elevation. Nevertheless, additional research is necessary to fully understand the benefits and limitations of this technology in the agricultural industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fathallah, F.A.: Musculoskeletal disorders in labor-intensive agriculture. Appl. Ergon. 41, 738–743 (2010). https://doi.org/10.1016/j.apergo.2010.03.003

    Article  Google Scholar 

  2. Kirkhorn, S.R., Earle-Richardson, G., Banks, R.: Ergonomic risks and musculoskeletal disorders in production agriculture: recommendations for effective research to practice. J. Agromed. 15, 281–299 (2010). https://doi.org/10.1080/1059924X.2010.488618

    Article  Google Scholar 

  3. Karttunen, J.P., Rautiainen, R.H., Leppälä, J.: Characteristics and costs of disability pensions in finnish agriculture based on 5-year insurance records. J. Agromed. 20, 282–291 (2015). https://doi.org/10.1080/1059924X.2015.1042179

    Article  Google Scholar 

  4. Rostamabadi, A., Jahangiri, M., Naderi Mansourabadi, B., Javid, M., Ghorbani, M., Banaee, S.: Prevalence of chronic diseases and occupational injuries and their influence on the health-related quality of life among farmers working in small-farm enterprises. J. Agromed. 24, 248–256 (2019). https://doi.org/10.1080/1059924X.2019.1592047

    Article  Google Scholar 

  5. Da Costa, B.R., Vieira, E.R.: Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies. Am. J. Ind. Med. 53, 285–323 (2010). https://doi.org/10.1002/ajim.20750

    Article  Google Scholar 

  6. Roquelaure, Y., et al.: Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population. Arthr. Care Res. Off. J. Am. Coll. Rheumatol. 55, 765–778 (2006). https://doi.org/10.1002/art.22222

    Article  Google Scholar 

  7. Gregorczyk, K.N., Hasselquist, L., Schiffman, J.M., Bensel, C.K., Obusek, J.P., Gu-tekunst, D.J.: Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage. Ergonomics 53, 1263–1275 (2010). https://doi.org/10.1080/00140139.2010.512982

    Article  Google Scholar 

  8. De Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59, 671–681 (2016). https://doi.org/10.1080/00140139.2015.1081988

    Article  Google Scholar 

  9. Romero, D., et al.: Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In: Proceedings of the International Conference on Computers and Industrial Engineering (CIE46), Tianjin, China, pp. 29–31. (Year)

    Google Scholar 

  10. Kim, H.K., Seong, S., Park, J., Kim, J., Park, J., Park, W.: Subjective evaluation of the effect of exoskeleton robots for rehabilitation training. IEEE Access 9, 130554–130561 (2021). https://doi.org/10.1109/ACCESS.2021.3112263

    Article  Google Scholar 

  11. Sakakibara, H., Miyao, M., Kondo, T.-A., Yamada, S.Y.: Overhead work and shoulder-neck pain in orchard farmers harvesting pears and apples. Ergonomics 38, 700–706 (1995). https://doi.org/10.1080/00140139508925141

    Article  Google Scholar 

  12. Kang, M.-Y., et al.: Musculoskeletal disorders and agricultural risk factors among Korean farmers. J. Agromed. 21, 353–363 (2016). https://doi.org/10.1080/1059924X.2016.1178612

    Article  Google Scholar 

  13. Hyun, D.J., Bae, K., Kim, K., Nam, S., Lee, D.-h.: A light-weight passive upper arm assistive exoskeleton based on multi-linkage spring-energy dissipation mechanism for overhead tasks. Robot. Auton. Syst. 122, 103309 (2019). https://doi.org/10.1016/j.robot.2019.103309

  14. Sood, D., Nussbaum, M.A., Hager, K.: Fatigue during prolonged intermittent overhead work: reliability of measures and effects of working height. Ergonomics 50, 497–513 (2007). https://doi.org/10.1080/00140130601133800

    Article  Google Scholar 

  15. Waters, T.R., Putz-Anderson, V., Garg, A.: Applications manual for the revised NIOSH lifting equation (1994)

    Google Scholar 

  16. Borg, G.A.: Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. (1982). https://doi.org/10.1249/00005768-198205000-00012

    Article  Google Scholar 

  17. Hermens, H.J., et al.: European recommendations for surface electromyography. Roessingh Res. Dev. 8, 13–54 (1999)

    Google Scholar 

  18. Perotto, A.O.: Anatomical Guide for the Electromyographer: The Limbs and Trunk. Charles C Thomas Publisher (2011)

    Google Scholar 

  19. De Luca, C.J.: The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163 (1997). https://doi.org/10.1123/jab.13.2.135

    Article  Google Scholar 

  20. Burden, A., Trew, M., Baltzopoulos, V.: Normalisation of gait EMGs: a re-examination. J. Electromyogr. Kinesiol. 13, 519–532 (2003). https://doi.org/10.1016/S1050-6411(03)00082-8

    Article  Google Scholar 

  21. Soderberg, G.L., Knutson, L.M.: A guide for use and interpretation of kinesiologic electromyographic data. Phys. Ther. 80, 485–498 (2000). https://doi.org/10.1093/ptj/80.5.485

    Article  Google Scholar 

  22. Yin, P., Yang, L., Qu, S., Wang, C.: Effects of a passive upper extremity exoskeleton for overhead tasks. J. Electromyogr. Kinesiol. 55, 102478 (2020). https://doi.org/10.1016/j.jelekin.2020.102478

    Article  Google Scholar 

  23. De Vries, A., De Looze, M.: The effect of arm support exoskeletons in realistic work activities: a review study. J. Ergon. 9, 1–9 (2019). https://doi.org/10.35248/2165-7556.19.9.255

    Article  Google Scholar 

  24. Rashedi, E., Kim, S., Nussbaum, M.A., Agnew, M.J.: Ergonomic evaluation of a wearable assistive device for overhead work. Ergonomics 57, 1864–1874 (2014). https://doi.org/10.1080/00140139.2014.952682

    Article  Google Scholar 

  25. Huysamen, K., Bosch, T., de Looze, M., Stadler, K.S., Graf, E., O’Sullivan, L.W.: Evaluation of a passive exoskeleton for static upper limb activities. Appl. Ergon. 70, 148–155 (2018). https://doi.org/10.1016/j.apergo.2018.02.009

    Article  Google Scholar 

  26. Kim, S., Nussbaum, M.A., Esfahani, M.I.M., Alemi, M.M., Alabdulkarim, S., Rashedi, E.: Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I–“expected” effects on discomfort, shoulder muscle activity, and work task performance. Appl. Ergon. 70, 315–322 (2018). https://doi.org/10.1016/j.apergo.2018.02.025

    Article  Google Scholar 

  27. McMillan, M., Trask, C., Dosman, J., Hagel, L., Pickett, W., Saskatchewan Farm Injury Cohort Study Team: Prevalence of musculoskeletal disorders among Saskatchewan farmers. J. Agromed. 20, 292–301 (2015). https://doi.org/10.1080/1059924X.2015.1042611

  28. Benos, L., Tsaopoulos, D., Bochtis, D.: A review on ergonomics in agriculture. Part I: manual operations. Appl. Sci. 10, 1905 (2020). https://doi.org/10.3390/app10061905

  29. Alabdulkarim, S., Nussbaum, M.A.: Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overhead drilling task. Appl. Ergon. 74, 55–66 (2019). https://doi.org/10.1016/j.apergo.2018.08.004

    Article  Google Scholar 

  30. Omoniyi, A., Trask, C., Milosavljevic, S., Thamsuwan, O.: Farmers’ perceptions of exoskeleton use on farms: finding the right tool for the work(er). Int. J. Ind. Ergon. 80, 103036 (2020). https://doi.org/10.1016/j.ergon.2020.103036

    Article  Google Scholar 

  31. Kermavnar, T., de Vries, A.W., de Looze, M.P., O’Sullivan, L.W.: Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review. Ergonomics 64, 685–711 (2021). https://doi.org/10.1080/00140139.2020.1870162

    Article  Google Scholar 

  32. Kim, S., Madinei, S., Alemi, M.M., Srinivasan, D., Nussbaum, M.A.: Assessing the potential for “undesired” effects of passive back-support exoskeleton use during a simulated manual assembly task: muscle activity, posture, balance, discomfort, and usability. Appl. Ergon. 89, 103194 (2020). https://doi.org/10.1016/j.apergo.2020.103194

    Article  Google Scholar 

  33. Howard, J., Murashov, V.V., Lowe, B.D., Lu, M.L.: Industrial exoskeletons: need for intervention effectiveness research. Am. J. Ind. Med. 63, 201–208 (2020). https://doi.org/10.1002/ajim.23080

    Article  Google Scholar 

  34. Kim, H.K., Hussain, M., Park, J., Lee, J., Lee, J.W.: Analysis of active back-support exoskeleton during manual load-lifting tasks. J. Med. Biol. Eng. 41(5), 704–714 (2021). https://doi.org/10.1007/s40846-021-00644-w

    Article  Google Scholar 

  35. Hussain, M., Park, J., Kim, N., Kim, H.K., Lee, J., Lee, J.: Effects of exoskeleton robot on human posture and lumbar pressure during manual lifting tasks. ICIC Express Lett. Part B Appl. 11, 439–445 (2020). https://doi.org/10.24507/icicelb.11.05.439

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01709902)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, B., Park, J. (2023). Examining Simulated Agricultural Tasks Using an Arm-Support Exoskeleton. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14050. Springer, Cham. https://doi.org/10.1007/978-3-031-35891-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35891-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35890-6

  • Online ISBN: 978-3-031-35891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics