Skip to main content

Illustration of the Usable AI Paradigm in Production-Engineering Implementation Settings

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2023)

Abstract

Data-driven methods, machine learning and artificial intelligence methods are not yet exploited to their intended potential in solving the technical-technological challenges, especially in industrial applications, despite versatile development progress. This is mainly justified by the insufficient practicality of AI solutions. To exploit the potential of AI methods, technical practitioners often rely on interdisciplinary collaboration with data science specialists or consultants. In any development and application of AI methods, a plethora of methods must be mastered for solution-oriented acquisition, pre-processing and quality assurance of required data, as well as for the selection of suitable algorithms and their adaptation. Coping with this complexity usually requires a great deal of effort, both for the individual domain expert and for the data engineers and data analysts. Complexity and intransparency of AI methods therefore hinder the effectiveness and efficiency of AI deployment. Focusing on user-friendly delivery of AI-based applications, the paradigm of Usable AI (UAI) has been defined. This paper first summarizes the UAI paradigm. Finally, some application examples from the field of production engineering illustrate how UAI can improve the practical applicability of AI methods for domain experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiemer, H., et al.: Need for UAI – anatomy of the paradigm of usable artificial intelligence for domain-specific AI applicability. Multimodal Technol. Interact. (2023)

    Google Scholar 

  2. acatech: Künstliche Intelligenz in der Industrie (2020)

    Google Scholar 

  3. Berg, A.: Industrie 4.0 – jetzt mit KI. Gehalten auf der bitkom Hannover April 1 (2019)

    Google Scholar 

  4. Rohleder, B.: Industrie 4.0 – so digital sind Deutschlands Fabriken. Gehalten auf der bitkom Hannover April 7 (2021)

    Google Scholar 

  5. Hutapea, L., Malanowski, N.: Potenziale und Hindernisse bei der Einführung digitaler Technik in der kunststoffverarbeitenden Industrie. Stiftung Arbeit und Umwelt der IG BCE

    Google Scholar 

  6. Röhl, K.-H., Bolwin, L., Hüttl, P.: Datenwirtschaft in Deutschland. BDI Bundesverbands der Deutschen Industrie e.V (2021)

    Google Scholar 

  7. Bühler, J., Fliehe, M., Shahd, M.: Künstliche Intelligenz in Unternehmen. Verband der TÜV e. V

    Google Scholar 

  8. Seifert, I., et al.: Potenziale der Künstlichen Intelligenz im produzierenden Gewerbe in Deutschland. iit-Institut für Innovation und Technik in der VDI/VDE Innovation + Technik GmbH (2018)

    Google Scholar 

  9. Weber, K., Bertschek, I., Ohnemus, J., Ebert, M.: Monitoring-Report Wirtschaft DIGITAL 2018. Bundesministerium für Wirtschaft und Energie (BMWi) (2018)

    Google Scholar 

  10. Rich, E., Knight, K.: Artificial Intelligence. McGraw–Hill, New York (1991)

    Google Scholar 

  11. Ertel, W.: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung. Springer, Wiesbaden (2021)

    Book  MATH  Google Scholar 

  12. Smuha, N.: A definition of AI: Main capabilities and scientific disciplines. Eur. Comm. 9 (2018)

    Google Scholar 

  13. International Standard ISO 9241-11 Second edition 2018-03

    Google Scholar 

  14. Nielsen, J.: Usability Engineering. Academic Press, Boston (1993)

    Book  MATH  Google Scholar 

  15. Zimmermann, V.: Artificial intelligence: high growth potential but low penetration in SMEs. KFW (2021)

    Google Scholar 

  16. Schröder, C.: The Challenges of Industry 4.0 for Small and Medium-sized Enterprises. Friedrich-Ebert-Stiftung, Bonn (2016)

    Google Scholar 

  17. Baptista, L.F., Barata, J.: Piloting industry 4.0 in SMEs with RAMI 4.0: an enterprise architecture approach. Procedia Comput. Sci. 192, 2826–2835 (2021). https://doi.org/10.1016/j.procs.2021.09.053

  18. Deutsches Institut für Normung: DIN SPEC 91345 Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) (2016)

    Google Scholar 

  19. Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining. Springer, London (2000)

    Google Scholar 

  20. Huber, S., Wiemer, H., Schneider, D., Ihlenfeldt, S.: DMME: data mining methodology for engineering applications – a holistic extension to the CRISP-DM model. Procedia CIRP 79, 403–408 (2019). https://doi.org/10.1016/j.procir.2019.02.106

    Article  Google Scholar 

  21. Deutsches Institut für Normung: DIN ISO 17359 Zustandsüberwachung und -diagnostik von Maschinen - Allgemeine Anleitungen (2018)

    Google Scholar 

  22. Drowatzky, L., Wiemer, H., Ihlenfeldt, S.: Data mining suitable digitization of production systems – a methodological extension to the DMME. In: Liewald, M., Verl, A., Bauernhansl, T., Möhring, HC. (eds) WGP 2022. LNPE, pp. 524–534. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-18318-8_53

  23. Schwarzenberger, M., Drowatzky, L., Wiemer, H., Ihlenfeldt, S.: Transferable condition monitoring for linear guidance systems using anomaly detection. In: Behrens, B.-A., Brosius, A., Drossel, W.-G., Hintze, W., Ihlenfeldt, S., Nyhuis, P. (eds.) WGP 2021. LNPE, pp. 497–505. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-78424-9_55

    Chapter  Google Scholar 

  24. Conrad, F., Mälzer, M., Schwarzenberger, M., Wiemer, H., Ihlenfeldt, S.: Benchmarking AutoML for regression tasks on small tabular data in materials design. Sci. Rep. 12, 19350 (2022). https://doi.org/10.1038/s41598-022-23327-1

    Article  Google Scholar 

  25. Zhang, Y., Ling, C.: A strategy to apply machine learning to small datasets in materials science. npj Comput. Mater. 4, 1–8 (2018). https://doi.org/10.1038/s41524-018-0081-z

  26. Morillo, F., Bordons, M., Gómez, I.: Interdisciplinarity in science: a tentative typology of disciplines and research areas. J. Am. Soc. Inform. Sci. Technol. 54, 1237–1249 (2003). https://doi.org/10.1002/asi.10326

    Article  Google Scholar 

  27. Feldhoff, K., Wiemer, H.: Praktikables, Ontologie-basiertes Forschungsdatenmanagement in der Additiven Fertigung. In:: Brockmann, S., Krupp, U. (Hrsg.) Werkstoffprüfung 2021 - Werkstoffe und Bauteile auf dem Prüfstand (2021)

    Google Scholar 

  28. Wiemer, H., Feldhoff, K., Ihlenfeldt, S.: FDM als Service für ein typisches Verbundprojekt in den Ingenieurwissenschaften auf Basis einer ontologie-basierten Verschlagwortung. Gehalten auf der November 22 (2021)

    Google Scholar 

  29. Raßloff, A., Wiemer, H., Zimmermann, W., Kästner, M.: Datengetriebene Prozess-, Werkstoff- und Strukturanalyse für die Additive Fertigung (AMTwin). DVM Workshop’ Grundlagen und Beispiele zur Digitalisierung für die Materialforschung und -prüfung, Berlin (2020)

    Google Scholar 

  30. Feldhoff, K., Wiemer, H.: AI-based prediction of the quality of additively manufactured components. In: Materials Science and Engineering Congress (MSE 2022) (2022)

    Google Scholar 

  31. Signorini, C., Mechtcherine, V.: Mineral-bonded composites for enhanced structural impact safety: the vision of the DFG GRK 2250. In: Beiträge zum 61. Forschungskolloquium mit 9. Jahrestagung des DAfStb, pp. 13–18. TU Dresden (2022)

    Google Scholar 

  32. Serin, G., Sener, B., Ozbayoglu, A.M., Unver, H.O.: Review of tool condition monitoring in machining and opportunities for deep learning. Int. J. Adv. Manuf. Technol. 109(3–4), 953–974 (2020). https://doi.org/10.1007/s00170-020-05449-w

    Article  Google Scholar 

  33. Kaluarachchi, T., Reis, A., Nanayakkara, S.: A review of recent deep learning approaches in human-centered machine learning. Sensors 21, 2514 (2021)

    Article  Google Scholar 

  34. Delio, T., Tlusty, J., Smith, S.: Use of audio signals for chatter detection and control (1992)

    Google Scholar 

  35. Navarro-Devia, J.H., Chen, Y., Dao, D.V., Li, H.: Chatter detection in milling processes—a review on signal processing and condition classification. Int. J. Adv. Manuf. Technol., 1–38 (2023)

    Google Scholar 

  36. Yang, G., Ye, Q., Xia, J.: Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inf. Fus. 77 (2021). https://doi.org/10.1016/j.inffus.2021.07.016

  37. Boos, E., Thiem, X., Wiemer, H., Ihlenfeldt, S.: Improving a deep learning temperature-forecasting model of a 3-axis precision machine with domain randomized thermal simulation data. In: Liewald, M., Verl, A., Bauernhansl, T., Möhring, HC. (eds.) WGP 2022. LNPE, pp. 574–584. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-18318-8_58

  38. Zhang, L.: Shape-based time series mining for process monitoring and anomaly detection (2021)

    Google Scholar 

  39. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  40. Bostrom, A., Bagnall, A.: Binary shapelet transform for multiclass time series classification. In: Transactions on Large-Scale Data-and Knowledge-Centered Systems XXXII: Special Issue on Big Data Analytics and Knowledge Discovery, pp. 24–46 (2017)

    Google Scholar 

  41. Wei, J., et al.: Machine learning in materials science (2019)

    Google Scholar 

  42. Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, p. 11 (2000)

    Google Scholar 

  43. Conrad, F., Boos, E., Mälzer, M., Wiemer, H., Ihlenfeldt, S.: Impact of data sampling on performance and robustness of machine learning models in production engineering. In: Liewald, M., Verl, A., Bauernhansl, T., Möhring, HC. (eds.) WGP 2022. LNPE, pp. 463–472. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-18318-8_47

  44. Płońska, A., Płoński, P.: MLJAR: State-of-the-art Automated Machine Learning Framework for Tabular Data. Version 0.10.3 (2021). https://github.com/mljar/mljar-supervised

  45. Hernández-García, A., König, P.: Further advantages of data augmentation on convolutional neural networks. Gehalten auf der (2018)

    Google Scholar 

  46. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  47. Han, D., Liu, Q., Fan, W.: A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 95, 43–56 (2018). https://doi.org/10.1016/j.eswa.2017.11.028

    Article  Google Scholar 

  48. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  49. Hussain, M., Bird, J.J., Faria, D.R.: A study on CNN transfer learning for image classification. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds.) UKCI 2018. AISC, vol. 840, pp. 191–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97982-3_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Conrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiemer, H. et al. (2023). Illustration of the Usable AI Paradigm in Production-Engineering Implementation Settings. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14050. Springer, Cham. https://doi.org/10.1007/978-3-031-35891-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35891-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35890-6

  • Online ISBN: 978-3-031-35891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics