Skip to main content

YOLO NFPEM: A More Accurate Iris Detector

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14051))

Included in the following conference series:

  • 978 Accesses

Abstract

Iris detection remains vital application value in computer vision. Although the considerable advances and successes have been achieved by utilizing deep convolutional neural networks for iris detection, directly locating a small proportion of the iris from the full facial images still confronts considerable challenges. In this study, we proposed the YOLO NFPEM network, which employing the Feature Pyramid Enhancement Module (FPEM) cascaded to enhance and merge the different scale features (52 × 52, 26 × 26, 13 × 13) from the PEP7 layer (52 × 52), PEP15 layer (26 × 26) and PEP17 layer (13 × 13) of YOLO Nano network. YOLO NFPEM was train and tested on our presented multi-scale eye dataset (MSED) which contains full and partial facial images, and left/ right eye images. The results shown that YOLO NFPEM with three PEP modules cascaded achieves the best AP for iris of ~ 91.37% higher than YOLO Nano (~83.99%), YOLO Nano with enhanced FPN cascaded and the other YOLO NFPEM architectures, while still reaching a mAP of ~ 84.62%. Furthermore, we found an irreconcilable contradiction, considering the memory consumption and computational cost, neither the enhanced FPN nor FPEM module cascaded can achieve the best performance on both mAP and AP of iris. Testing results also shown that the small-size feature extraction and fusion capabilities of PEP modules cascaded are more powerful than FPN and enhanced FPN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tong, K., Wu, Y., Zhou, F.: Recent advances in small object detection based on deep learning: A review. Image Vis. Comput. 97 (2020), https://doi.org/10.1016/j.imavis.2020.103910

  2. Sandler, M., Howard, A., Zhu, M., et al.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018) https://doi.org/10.1109/CVPR.2018.00474.

  3. Wong, A., Famuori, M., Shafiee, M.J., et al.: YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection. arXiv:1910.01271

  4. Deng, C., Wang, M., Liu, L., et al.: Extended Feature Pyramid Network for Small Object Detection. arXiv: 2003.07021v2

  5. Zhang, Y., Bai, Y., Ding, M., Ghanem, B.: Multi-task generative adversarial network for detecting small objects in the wild. Int. J. Comput. Vision 128(6), 1810–1828 (2020). https://doi.org/10.1007/s11263-020-01301-6

    Article  MathSciNet  Google Scholar 

  6. Kisantal, M., Wojna, Z.,Murawski, J., et al.: Augmentation for small object detection. (2019) arXiv: 1902.07296v1

  7. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  8. Lin, T., Dollár, P., Girshick, R., et al.: Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944, 2017, https://doi.org/10.1109/CVPR.2017.106.

  9. Wang, W., Xie, E., Song, X., et al.: Efficient and Accurate Arbitrary-Shaped Text Detection With Pixel Aggregation Network. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8439–8448 (2019) https://doi.org/10.1109/ICCV.2019.00853.

  10. Zhang, S., Zhu, X., Lei, Z., et al.: S^3FD: single shot scale-invariant face detector. IEEE Int. Conf. Comput. Vis. (ICCV) 2017, 192–201 (2017). https://doi.org/10.1109/ICCV.2017.30

    Article  Google Scholar 

  11. Zhang, W., Wang, S., Thachan, S., Chen, J., Qian, Y.: Deconv R-CNN for Small Object Detection on Remote Sensing Images. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 2483–2486, https://doi.org/10.1109/IGARSS. 2018.8517436.

  12. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection - SNIP. IEEE/CVF Conf. Comput. Vis. Patt. Recogn. 2018, 3578–3587 (2018). https://doi.org/10.1109/CVPR.2018.00377

    Article  Google Scholar 

  13. Singh, B., Najibi & L.y S. Davis.: SNIPER: Efficient Multi-Scale Training. In: NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Dec. 2018, pp. 9333–9343 (2018)

    Google Scholar 

  14. Kim, Y., Kang, B., Kim, D.: “SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection”, 15th European Conference of Computer Vision, pp. 328–343. Munich, Germany (2018)

    Google Scholar 

  15. Wang, X., Shrivastava, A., Gupta, A.: A-fast-RCNN: hard positive generation via adversary for object detection. IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR) 2017, 3039–3048 (2017). https://doi.org/10.1109/CVPR.2017.324

    Article  Google Scholar 

  16. Grel, T.: Region of interest pooling explained. https://deepsense.ai/region-of-interest-pooling-explained/ (2017)

  17. Hu, X., Xu, X., Xiao, Y., et al.: SINet: A scale-insensitive convolutional neural network for fast vehicle detection. IEEE Trans. Intell. Transp. Syst. 20(3), 1010–1019 (2019). https://doi.org/10.1109/TITS.2018.2838132

    Article  Google Scholar 

  18. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR) 2016, 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

    Article  Google Scholar 

  19. Soltanolkotabi, M., Javanmard, A., Lee, J.D.: Theoretical insights into the optimization landscape of over-parameterized shallow neural networks. IEEE Trans. Inf. Theor. 65(2), 742–769 (2019). https://doi.org/10.1109/TIT.2018.2854560

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, S., Li, Z., Tang, Z.: Relation R-CNN: a graph based relation-aware network for object detection. IEEE Signal Process. Lett. 27, 1680–1684 (2020). https://doi.org/10.1109/LSP.2020.3025128

    Article  Google Scholar 

  21. Tang, X., Du, D.K., He, Z., Liu, J.: PyramidBox: A Context-Assisted Single Shot Face Detector. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 812–828. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_49

    Chapter  Google Scholar 

  22. Gregor, K., Danihelka, I., Graves, A., et al.: DRAW: A Recurrent Neural Network for Image Generation. In: ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, vol. 37, pp. 1462–1471 (2015)

    Google Scholar 

  23. Sak, H., Senior, A., Beaufays, F.: Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. Comput. Sci. 338–342, (2014)

    Google Scholar 

  24. Xi, Y., Zheng, J., He, X., et al.: Beyond context: exploring semantic similarity for small object detection in crowded scenes. Patt. Recogn. Lett. 137, 53–60 (2020). https://doi.org/10.1016/j.patrec.2019.03.009

    Article  Google Scholar 

  25. Xing, C., Liang, X., Bao, Z.: A Small Object Detection Solution by Using Super- Resolution Recovery. In: 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), 2019, pp. 313–316, https://doi.org/10.1109/ICCSNT47585.2019.8962422

  26. Li, Y., Dong, H., Li, H., et al.: Multi-block SSD based on small object detection for UAV railway scene surveillance. Chin. J. Aeronaut. 33(6), 1747–1755 (2020)

    Article  Google Scholar 

  27. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR) 2017, 1951–1959 (2017). https://doi.org/10.1109/CVPR.2017.211

    Article  Google Scholar 

  28. Liang, X., Zhang, J., Zhuo, L., et al.: Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis. IEEE Trans. Circuits Syst. Video Technol. 30(6), 1758–1770 (2020). https://doi.org/10.1109/TCSVT.2019.2905881

    Article  Google Scholar 

  29. Fang, P., Shi, Y.: Small Object Detection Using Context Information Fusion in Faster R-CNN. In: 2018 IEEE 4th International Conference on Computer and Communications (ICCC), 2018, pp. 1537–1540, https://doi.org/10.1109/Comp Comm.2018.8780579

  30. Bosquet, B., Mucientes, M., Brea, V.M.: STDnet: Exploiting high resolution feature maps for small object detection. Eng. Appl. Artif. Intell. 91, (2020) https://doi.org/10.1016/j.engappai.2020.103615

  31. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR) 2017, 6517–6525 (2017). https://doi.org/10.1109/CVPR.2017.690

    Article  Google Scholar 

  32. Wang, C., Zhu, Y., Liu, Y., et al.: Joint Iris Segmentation and Localization Using Deep Multi-task Learning Framework (2019) arXiv:1901.11195

  33. Lee, Y., Kim, K., Hoang, T., et al.: Deep Residual CNN-based ocular recognition based on rough pupil detection in the images by NIR camera sensor. Sensors 19(4), 842–872 (2019). https://doi.org/10.3390/s19040842

    Article  Google Scholar 

  34. Minaee, S., Abdolrashidi, A.: DeepIris: Iris Recognition Using A Deep Learning Approach (2019) arXiv:1907.09380

  35. Miron, C., Pasarica, A., Bozomitu, R.G., et al.: Efficient pupil detection with a convolutional neural network. E-Health Bioeng. Conf. (EHB) 2019, 1–4 (2019). https://doi.org/10.1109/EHB47216.2019.8969984

    Article  Google Scholar 

  36. Feng, C., Sun, Y., Li, X.: Iris R-CNN: Accurate Iris Segmentation in Non-cooperative Environment (2019) arXiv:1903.10140

  37. Proença, H., Neves, J.C.: Segmentation-less and non-holistic deep-learning frameworks for iris recognition. IEEE/CVF Conf. Comput. Vis. Patt. Recogn. Workshops (CVPRW) 2019, 2296–2305 (2019). https://doi.org/10.1109/CVPRW.2019.00283

    Article  Google Scholar 

  38. Trokielewicz, M., Czajka, A., Maciejewicz, P.: Post-mortem Iris Recognition with Deep-Learning-based Image Segmentation. Vol. 94, Feb. 2020, https://doi.org/10.1016/j.imavis.2019.103866

  39. Gangwar, A., Joshi, A., Joshi, P., et al.: DeepIrisNet2: Learning Deep-IrisCodes from Scratch for Segmentation-Robust Visible Wavelength and Near Infrared Iris Recognition (2019) arXiv:1902.05390

  40. Hassan, B., Ahmed, R., Hassan, T., et al.: SIP-SegNet: A Deep Convolutional Encoder-Decoder Network for Joint Semantic Segmentation and Extraction of Sclera, Iris and Pupil based on Periocular Region Suppression (2020) arXiv:2003.00825

  41. Rot, P., Emeršič, Ž, Struc, V., Peer, P.: Deep multi-class eye segmentation for ocular biometrics. IEEE Int. Work Conf. Bioinspired Intell. (IWOBI) 2018, 1–8 (2018). https://doi.org/10.1109/IWOBI.2018.8464133

    Article  Google Scholar 

  42. Wolfgang, F., Thiago, S., Gjergji, K., et al.: PupilNet: Convolutional Neural Networks for Robust Pupil Detection (2020) arXiv:1601.04902

  43. Han, S.Y., Kim, Y., Lee, S.H., Cho, N.I.: Pupil Center Detection Based on the UNet for the User Interaction in VR and AR Environments. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 2019, pp. 958–959, https://doi.org/10.1109/VR.2019.8798027

  44. He, F., Han, Y., Wang, H., et al.: Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network. J. Electron. Imag. 26(2), (2017) https://doi.org/10.1117/1.JEI.26.2.023005

  45. Joseph, R., Ali, F.: YOLOv3: An Incremental Improvement (2018) arXiv:1804.02767

  46. Wu, D., Lv, S., Jiang, M., et al: Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Comput. Electron. Agricul. 178, 2020, https://doi.org/10.1016/j.compag.2020.105742

  47. Chen, W., Huang, H., Peng, S., Zhou, C., Zhang, C.: YOLO-face: a real-time face detector. Vis. Comput. 37(4), 805–813 (2020). https://doi.org/10.1007/s00371-020-01831-7

    Article  Google Scholar 

  48. Proenca, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.A.: The UBIRIS.v2: A database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans. Patt. Anal. Mach. Intell. 32(8), 1529–1535 (2010). https://doi.org/10.1109/TPAMI.2009.66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, X. et al. (2023). YOLO NFPEM: A More Accurate Iris Detector. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14051. Springer, Cham. https://doi.org/10.1007/978-3-031-35894-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35894-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35893-7

  • Online ISBN: 978-3-031-35894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics