Skip to main content

Using Machine Learning to Model Potential Users with Health Risk Concerns Regarding Microchip Implants

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14051))

Included in the following conference series:

Abstract

Understanding traits that are associated with users who are willing to accept microchip implants can help drive future microchip designs, but little is known in this space. We applied three Machine Learning classifiers, that are Decision Trees, Random Forest and XGBoost on demographic information (user characteristics) of 255 survey respondents. The aim was to recognize dominant features and characteristics that lead participants to be categorized as having “Health risk” concern regarding micro-chipping. Comparison of the classifiers in the prediction tasks demonstrated that XGBoost provides the best performance in term of accuracy, precision and recall. XGBoost also showed that “Migration status”, “Race”, “Age” and “Degree” are the most important and “Medical Condition” is the next important characteristic of potential users with “Health risk” concerns about micro-chipping. Further research is needed to classify other concerns and expectations of the survey respondents and to create a fuller understanding of the users willing to accept microchip implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. TODAY, D.K.U.: Implantable technology will get under our skin, March 2014. https://www.usatoday.com/story/tech/reviewed-com/2014/03/27/implantable-tech-is-the-next-wave/6914363/

  2. NEWS, C.S.C.: Meet the humans with microchips implanted in them, June 2016. https://www.cbsnews.com/news/meet-the-humans-with-microchips-implanted-in-them/

  3. CNN, S.W.: Is human chip implant wave of the future? January 1999. https://www.edition.cnn.com/TECH/computing/9901/14/chipman.idg/

  4. Nsanze, F.: ICT implants in the human body-a review. In: The European Group on Ethics in Science and New Technologies to the European Commission (2005)

    Google Scholar 

  5. Sobot, R.: Implantable technology: history, controversies, and social implications [commentary]. IEEE Technol. Soc. Mag. 37(4), 35–45 (2018)

    Article  Google Scholar 

  6. Microchip, T.: Chipping away employee privacy: legal implications of RFID microchip implants for employees, 10 October 2019. https://www.natlawreview.com/article/chipping-away-employee-privacy-legal-implications-rfid-microchip-implants-employees

  7. Burt, C.: Chip implants from Swedish developer support digital health pass storage under your skin, December 2021. https://www.biometricupdate.com/202112/chip-implants-from-swedish-developer-support-digital-health-pass-storage-under-your-skin

  8. Bramstedt, K.A.: When microchip implants do more than drug delivery: blending, blurring, and bundling of protected health information and patient monitoring. Technol. Health Care 13(3), 193–198 (2005)

    Article  Google Scholar 

  9. Joannou, C.: Are microchip implants the future of ticketing? November 2017. https://www.forbes.com/sites/chrisjoannou/2017/11/06/are-microchip-implants-the-future-of-ticketing/?sh=31414f89426d

  10. Lohrmann, D.: Chip implants: opportunities, concerns and what could be next, 16 January 2022. https://www.govtech.com/blogs/lohrmann-on-cybersecurity/chip-implants-opportunities-concerns-and-what-could-be-next

  11. Ghormley, S.: The opportunities and fears of human microchipping, October 2021. https://medium.com/@sarah.ghormley/the-opportunities-and-fears-of-human-microchipping-ad77c1036e33

  12. Choi, C.Q.: Wireless ‘neural dust’ could monitor your brain, 3 August 2016. https://www.popsci.com/tiny-wireless-implants-could-monitor-your-brain/

  13. Hooijdonk, R.V.: BNR mindshift|chips in your body - sure, why not? October 2015. https://www.blog.richardvanhooijdonk.com/en/bnr-mindshift-chips-in-your-body-sure-why-not/

  14. Bill Holton, V.R.: Four emerging vision-enhancing technologies: the implantable miniature telescope, the telescopic contact lens, the argus ii retinal prosthesis, and the artificial silicon retina, October 2015. https://www.afb.org/aw/14/9/15655

  15. Michael, K., McNamee, A., Michael, M.G.: The emerging ethics of humancentric GPS tracking and monitoring. In: 2006 International Conference on Mobile Business, p. 34. IEEE (2006)

    Google Scholar 

  16. Foster, K.R., Jaeger, J.: Ethical implications of implantable radiofrequency identification (RFID) tags in humans. Am. J. Bioeth. 8(8), 44–48 (2008)

    Article  Google Scholar 

  17. Perakslis, C., Michael, K., Michael, M., Gable, R.: Perceived barriers for implanting microchips in humans: a transnational study. In: 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), pp. 1–8. IEEE (2014)

    Google Scholar 

  18. Bazaka, K., Jacob, M.V.: Implantable devices: issues and challenges. Electronics 2(1), 1–34 (2012)

    Article  Google Scholar 

  19. Garson, G.D., Khosrow-Pour, D., et al.: Handbook of Research on Public Information Technology. IGI Global (2008)

    Google Scholar 

  20. Dictionary: What is user characteristics, May 2018. https://www.igi-global.com/dictionary/user-characteristics/31176

  21. Kim, C.: User characteristics and behaviour in operating annoying electronic products. Int. J. Des. 8(1) (2014)

    Google Scholar 

  22. Diener, E., Biswas-Diener, R., Diener, E.: NOBA Textbook Series: Psychology. DEF, Champaign (2019)

    Google Scholar 

  23. Diener, E., Lucas, R.E.: Personality traits (2023). https://nobaproject.com/modules/personality-traits

  24. Shafeie, S., Chaudhry, B.M., Mohamed, M.: Modeling subcutaneous microchip implant acceptance in the general population: a cross-sectional survey about concerns and expectations. Informatics 9(1) (2022)

    Google Scholar 

  25. Žnidaršič, A., Werber, B.: Adoption of RFID microchip for eHealth according to eActivities of potential users (2014)

    Google Scholar 

  26. Gangadharbatla, H.: Biohacking: an exploratory study to understand the factors influencing the adoption of embedded technologies within the human body. Heliyon 6(5), e03931 (2020)

    Article  Google Scholar 

  27. Chebolu, R.D.: Exploring factors of acceptance of chip implants in the human body (2021)

    Google Scholar 

  28. Frank, M.L., Poindexter, A.N., Johnson, M.L., Bateman, L.: Characteristics and attitudes of early contraceptive implant acceptors in Texas. Family Plann. Perspect. 208–213 (1992)

    Google Scholar 

  29. Niemeijer, A.R., Frederiks, B.J., Riphagen, I.I., Legemaate, J., Eefsting, J.A., Hertogh, C.M.: Ethical and practical concerns of surveillance technologies in residential care for people with Dementia or intellectual disabilities: an overview of the literature. Int. Psychogeriatr. 22(7), 1129–1142 (2010)

    Article  Google Scholar 

  30. Cristina, O.P., Jorge, P.B., Eva, R.L., Mario, A.O.: From wearable to insideable: is ethical judgment key to the acceptance of human capacity-enhancing intelligent technologies? Comput. Hum. Behav. 114, 106559 (2021)

    Article  Google Scholar 

  31. Žnidaršič, A., Baggia, A., Werber, B.: The profile of future consumer with microchip implant: habits and characteristics. Int. J. Consum. Stud. 46(4), 1488–1501 (2022)

    Article  Google Scholar 

  32. Žnidaršič, A., Baggia, A., Werber, B.: The profile of future consumer with microchip implant

    Google Scholar 

  33. Werber, B., Baggia, A., Žnidaršič, A.: Behaviour intentions to use RFID subcutaneous microchips: a cross-sectional Slovenian perspective (2017)

    Google Scholar 

  34. Dragović, M., et al.: Factors affecting RFID subcutaneous microchips usage. In: Sinteza 2019-International Scientific Conference on Information Technology and Data Related Research, Singidunum University, pp. 235–243 (2019)

    Google Scholar 

  35. Werber, B., Baggia, A., Žnidaršič, A.: Factors affecting the intentions to use RFID subcutaneous microchip implants for healthcare purposes. Organizacija 51(2), 121–133 (2018)

    Article  Google Scholar 

  36. Badr, W.: 6 different ways to compensate for missing values in a dataset (data imputation with examples), 5 January 2019. https://www.towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-data-imputation-with-examples-6022d9ca0779

  37. Wikipedia: Aggregate data. (wikipedia, https://www.en.wikipedia.org/wiki/Aggregate_data

  38. Cho, E., Chang, T.W., Hwang, G.: Data preprocessing combination to improve the performance of quality classification in the manufacturing process. Electronics 11(3), 477 (2022)

    Article  Google Scholar 

  39. Team, G.L.: Decision tree algorithm explained with examples (2022). https://www.mygreatlearning.com/blog/decision-tree-algorithm/

  40. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees. Wadsworth Int. Group 37(15), 237–251 (1984)

    MATH  Google Scholar 

  41. Abu-Hanna, A., Hunter, J.: Artificial intelligence in medicine 16, 201 (1999). Elsevier

    Google Scholar 

  42. Chase, R.J., Harrison, D.R., Burke, A., Lackmann, G.M., McGovern, A.: A machine learning tutorial for operational meteorology. Part I: Tradit. Mach. Learn. Weather Forecasting 37(8), 1509–1529 (2022)

    Google Scholar 

  43. Kumar, S.: 3 techniques to avoid overfitting of decision trees (2021). https://towardsdatascience.com/3-techniques-to-avoid-overfitting-of-decision-trees-1e7d3d985a09

  44. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  45. Great Learning Team: Random forest algorithm in machine learning: an overview (2022). https://www.mygreatlearning.com/blog/random-forest-algorithm/

  46. Natekin, A., Knoll, A.: Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)

    Article  Google Scholar 

  47. He, Z., Lin, D., Lau, T., Wu, M.: Gradient boosting machine: a survey. arXiv preprint arXiv:1908.06951 (2019)

  48. XGBoost developers: XGBoost tutorials (2022). https://xgboost.readthedocs.io/en/stable/tutorials/model.html

  49. Hossin, M.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5(2) (2020)

    Google Scholar 

  50. Liu, Y., Zhou, Y., Wen, S., Tang, C.: A strategy on selecting performance metrics for classifier evaluation. Int. J. Mob. Comput. Multimedia Commun. (IJMCMC) 6(4), 20–35 (2014)

    Article  Google Scholar 

  51. Pepe, M.S.: The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  52. Fielding, A.H., Bell, J.F.: A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997)

    Article  Google Scholar 

  53. Martínez-Meyer, E., Nakamura, M., Araújo, M.B.: A. Townsend Peterson Jorge Soberón Richard G. Pearson Robert P. Anderson

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekufeh Shafeie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shafeie, S., Mohamed, M., Issa, T.B., Chaudhry, B.M. (2023). Using Machine Learning to Model Potential Users with Health Risk Concerns Regarding Microchip Implants. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14051. Springer, Cham. https://doi.org/10.1007/978-3-031-35894-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35894-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35893-7

  • Online ISBN: 978-3-031-35894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics