Abstract
Voice Assistants (VAs) are becoming a popular way to perform everyday tasks. In medical contexts, VAs are being studied for their usage in areas such as medical care in rural areas, medical diagnosis, and intersession treatment during therapies. This systematic review aims to assess the usability of voice-based interaction in therapies in health care and compare technical and conversational implementations and insights on the design process. The survey followed the PRISMA guidelines. IEEExplore, ACM Digital Library, Scopus, and PubMed, were systematically searched for relevant studies that describe the use of voice-based systems in therapeutic context. 633 studies were screened, of which 9 studies met the inclusion criteria. The literature survey reveals a high degree of diversity among the identified studies regarding therapy form and level of implementation. Also, the range of utilized VA-technology and design principles is quite broad. Following this, the field of VA-supported therapy is still in an exploratory phase and further research is necessary to establish a level of consistency among studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
SMART stands for Specific, Measurable, Achievable, Realistic, and Time-based.
- 2.
Conversational Actions for the Google Assistant platform are discontinued from 13 June 2023 on (https://developers.google.com/assistant/ca-sunset).
- 3.
see https://cloud.google.com/dialogflow [11, 31].
- 4.
- 5.
References
ACOG Committee: COG committee opinion no. 757: Screening for perinatal depression. Obstetr. Gynecol. 132(5) (2018). https://doi.org/10.1097/AOG.0000000000002927
Attkisson, C., Zwick, R.: The client satisfaction questionnaire: psychometric properties and correlations with service utilization and psychotherapy outcome. Eval. Program Plann. 5(3), 233–237 (1982). https://doi.org/10.1016/0149-7189(82)90074-X
Aymerich-Franch, L., Ferrer, I.: Investigating the use of speech-based conversational agents for life coaching. Int. J. Hum.-Comput. Stud. 159 (2022). https://doi.org/10.1016/j.ijhcs.2021.102745
Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum.-Comput. Interact. 24(6), 574–594 (2008). https://doi.org/10.1080/10447310802205776
Bickmore, T., Rubin, A., Simon, S.: Substance use screening using virtual agents: towards automated screening, brief intervention, and referral to treatment (SBIRT). In: Proceedings of the ACM International Conference on Intelligent Virtual Agents (2020). https://doi.org/10.1145/3383652.3423869
Boß, L., Lehr, D., Reis, D., Vis, C., Riper, H., Berking, M., Ebert, D.: Reliability and validity of assessing user satisfaction with web-based health interventions. J. Med. Internet Res. 18(8) (2016). https://doi.org/10.2196/jmir.5952
Brooke, J.: SUS: A ‘Quick and Dirty’ Usability Scale. CRC Press (1996)
Busch, M., Kania, M., Assmann, T., Siegert, I.: Radlogistik als anwendungsgebiet für digitale sprachassistenten - ein diskussionsbeitrag. In: Elektronische Sprachsignalverarbeitung 2023. Tagungsband der 34. Konferenz. Studientexte zur Sprachkommunikation, vol. 107, pp. 220–227. TUDpress, Munich (2023)
Catania, F., Spitale, M., Garzotto, F.: Toward the introduction of google assistant in therapy for children with neurodevelopmental disorders: an exploratory study. In: Extended Abstracts of the 2021 ACM CHI (2021). https://doi.org/10.1145/3411763.3451666
Chang, M., Michael, T., Möller, S., Schlangen, D.: The power of conversation flow in video conference tools: evaluation of speaker change cues. In: Niebuhr, O., Lundmark, M.S., Weston, H. (eds.) Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2022, pp. 81–88. TUDpress, Dresden (2022)
Cheng, A., Raghavaraju, V., Kanugo, J., Handrianto, Y.P., Shang, Y.: Development and evaluation of a healthy coping voice interface application using the google home for elderly patients with type 2 diabetes. In: 15th IEEE Annual Consumer Communications & Networking Conference (2018). https://doi.org/10.1109/CCNC.2018.8319283
Conde-Caballero, D., Rivero-Jiménez, B., Cipriano-Crespo, C., Jesus-Azabal, M., Garcia-Alonso, J., Mariano-Juárez, L.: Treatment adherence in chronic conditions during ageing: uses, functionalities, and cultural adaptation of the assistant on care and health offline (acho) in rural areas. J. Pers. Med. 11(3) (2021). https://doi.org/10.3390/jpm11030173
Crawford, J.R., Henry, J.D.: The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample. Br. J. Clin. Psychol. 43, 245–265 (2004)
Diener, E., Emmons, R.A., Larsen, R.J., Griffin, S.: The satisfaction with life scale. J. Pers. Assess. 49(1), 71–75 (1985). https://doi.org/10.1207/s15327752jpa4901_13
Gotthardt, M., Striegl, J., Loitsch, C., Weber, G.: Voice assistant-based CBT for depression in students: effects of empathy-driven dialog management. In: Miesenberger, K., Kouroupetroglou, G., Mavrou, K., Manduchi, R., Covarrubias Rodriguez, M., Penáz, P. (eds.) ICCHP-AAATE 2022. LNCS, vol. 13341, pp. 451–461. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08648-9_52
Haase, P., Nikolov, A., Trame, J., Kozlov, A., Herzig, D.: Alexa, Ask Wikidata! Voice interaction with knowledge graphs using Amazon Alexa. In: Proceedings of the ISWC 2017 (2017)
Hamilton, D., Lane, J., Gaston, P., Patton, J., Macdonald, D., Simpson, A., Howie, C.: Assessing treatment outcomes using a single question: the net promoter score. Bone Joint J. 96-B(5), 622–628 (2014). https://doi.org/10.1302/0301-620X.96B5.32434
Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Szwillus, G., Ziegler, J. (eds.) Mensch & Computer 2003, Berichte des German Chapter of the ACM, vol. 57, pp. 187–196. Vieweg+Teubner, Wiesbaden (2003)
Hosier, J., Zhou, Y., Sharma, N., Gurbani, V.K.: Lightweight domain adaptation: a filtering pipeline to improve accuracy of an automatic speech recognition (ASR) engine. In: 4th ACAI. ACM (2022). https://doi.org/10.1145/3508546.3508641
Karrer, K., Glaser, C., Clemens, C., Bruder, C.: Technikaffinität erfassen - der Fragebogen TA-EG, vol. 8. VDI-Verl (2009)
Kinsella, B.: Nearly 90 Million U.S. Adults Have Smart Speakers, Adoption Now Exceeds One-Third of Consumers. voicebot.ai (2020). https://perma.cc/336P-2C77. Accessed 28 Apr 2020
Kroenke, K., Spitzer, R., Williams, J.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606–13 (2001). https://doi.org/10.1046/j.1525-1497.2001.016009606.x
Kumar, A., et al.: Just ask: building an architecture for extensible self-service spoken language understanding. arXiv preprint arXiv:1711.00549 (2017)
Lesage, F., Berjot, S., Deschamps, F.: Clinical stress assessment using a visual analogue scale. Occup. Med. 62, 600–605 (2012). https://doi.org/10.1093/occmed/kqs140
Li, J., Maharjan, B., Xie, B., Tao, C.: A personalized voice-based diet assistant for caregivers of alzheimer disease and related dementias: system development and validation. J. Med. Internet Res. 22(9) (2020). https://doi.org/10.2196/19897
McTear, M.: Conversation modelling for chatbots: current approaches and future directions. In: Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2018, pp. 175–185 (2018)
McTear, M., Callejas, Z., Griol, D.: The conversational interface: talking to smart devices. In: The Conversational Interface: Talking to Smart Devices, pp. 1–422 (2016). https://doi.org/10.1007/978-3-319-32967-3/COVER
Minge, M.: Nutzererleben messen mit dem meCUE 2.0 - Ein Tool für alle Fälle? In: Dachselt, R., Weber, G. (eds.) Mensch und Computer 2018 - Workshopband. GI, Bonn (2018). https://doi.org/10.18420/muc2018-ws16-0485
Neyer, F.J., Felber, J., Gebhardt, C.: Entwicklung und validierung einer kurzskala zur erfassung von technikbereitschaft. Diagnostica 58(2), 87–99 (2012). https://doi.org/10.1026/0012-1924/a000067
Page, M.J., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLOS Med. 18(3), 1–15 (2021). https://doi.org/10.1371/journal.pmed.1003583
Park, D.E., Shin, Y.J., Park, E., Choi, I.A., Song, W.Y., Kim, J.: Designing a voice-bot to promote better mental health: UX design for digital therapeutics on ADHD patients. In: Extended Abstracts of the 2020 ACM CHI (2020). https://doi.org/10.1145/3334480.3382948
Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech recognition via large-scale weak supervision (2022). https://doi.org/10.48550/ARXIV.2212.04356, https://arxiv.org/abs/2212.04356
Robitschek, C.: Personal growth initiative: the construct and its measure. Meas. Eval. Couns. Dev. 30(4), 183–198 (1998). https://doi.org/10.1080/07481756.1998.12068941
Scheible, J., Hofmann, F., Reichert, M., Pryss, R., Schickler, M.: Generic concept for integrating voice assistance into smart therapeutic interventions. In: IEEE 35th International Symposium on Computer-Based Medical Systems, pp. 56–61 (2022). https://doi.org/10.1109/CBMS55023.2022.00017
Schmidt, M., Braunger, P.: A survey on different means of personalized dialog output for an adaptive personal assistant. In: Adjunct Publication of the 26th UMAP, pp. 75–81. ACM, New York (2018). https://doi.org/10.1145/3213586.3226198
Schneider, E.E., Schönfelder, S., Domke-Wolf, M., Wessa, M.: Measuring stress in clinical and nonclinical subjects using a German adaptation of the perceived stress scale. Int. J. Clin. Health Psychol. 20(2), 173–181 (2020). https://doi.org/10.1016/j.ijchp.2020.03.004
Schrepp, M., Thomaschewski, J.: Design and validation of a framework for the creation of user experience questionnaires. Int. J. Interact. Multimed. Artif. Intell. 7(5), 88–95 (2019). https://doi.org/10.9781/ijimai.2019.06.006
Serpil Tas, R.A.: Nutzung von sprachassistenten in deutschland. In: Sprachassistenten - Anwendungen, Implikationen, Entwicklungen : ITG-Workshop : Magdeburg, p. 39 (2020)
Siegert: “Alexa in the wild” - Collecting Unconstrained Conversations with a Modern Voice Assistant in a Public Environment. In: Proceedings of The 12th LREC, pp. 608–612. ELRA, Marseille (2020)
Siegert, I., Busch, M., Krüger, J.: Does users’ system evaluation influence speech behavior in HCI?-First insights from the engineering and psychological perspective. In: Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2020, pp. 241–248 (2020)
Siegert, I., Busch, M., Metzner, S., Junne, F., Krüger, J.: Music-guided imagination and digital voice assistant - study design and first results on the application of voice assistants for music-guided stress reduction. In: Salvendy, G., Wei, J. (eds.) HCII 2022. LNCS, vol. 13337, pp. 347–362. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05014-5_29
Silber-Varod, V., Siegert, I., Jokisch, O., Sinha, Y., Geri, N.: A cross-language study of selected speech recognition systems. J. Appl. Knowl. Manage.: OJAKM 9, 1–15 (2021). https://doi.org/10.36965/OJAKM.2021.9(1)1-15
Striegl, J., Gotthardt, M., Loitsch, C., Weber, G.: Investigating the usability of voice assistant-based CBT for age-related depression. In: Miesenberger, K., Kouroupetroglou, G., Mavrou, K., Manduchi, R., Covarrubias Rodriguez, M., Penáz, P. (eds.) ICCHP-AAATE 2022. LNCS, vol. 13341, pp. 432–441. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08648-9_50
Wendemuth, A., Biundo, S.: A companion technology for cognitive technical systems. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) Cognitive Behavioural Systems. LNCS, vol. 7403, pp. 89–103. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34584-5_7
Xiong, W., Wu, L., Droppo, J., Huang, X., Stolcke, A.: The Microsoft 2017 conversational speech recognition system. In: Proceedinbngs of the IEEE ICASSP-2018, Calgary, Kanada, pp. 5934–5938 (2018)
Yang, S., Lee, J., Sezgin, E., Bridge, J., Lin, S.: Clinical advice by voice assistants on postpartum depression: cross-sectional investigation using apple Siri, Amazon Alexa, Google assistant, and Microsoft Cortana. JMIR Mhealth Uhealth 11(9), 353–360 (2021). https://doi.org/10.2196/24045
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Siegert, I., Busch, M., Metzner, S., Krüger, J. (2023). Voice Assistants for Therapeutic Support – A Literature Review. In: Salvendy, G., Wei, J. (eds) Design, Operation and Evaluation of Mobile Communications . HCII 2023. Lecture Notes in Computer Science, vol 14052. Springer, Cham. https://doi.org/10.1007/978-3-031-35921-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-35921-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35920-0
Online ISBN: 978-3-031-35921-7
eBook Packages: Computer ScienceComputer Science (R0)