Skip to main content

Voice Assistants for Therapeutic Support – A Literature Review

  • Conference paper
  • First Online:
Design, Operation and Evaluation of Mobile Communications (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14052))

Included in the following conference series:

  • 723 Accesses

Abstract

Voice Assistants (VAs) are becoming a popular way to perform everyday tasks. In medical contexts, VAs are being studied for their usage in areas such as medical care in rural areas, medical diagnosis, and intersession treatment during therapies. This systematic review aims to assess the usability of voice-based interaction in therapies in health care and compare technical and conversational implementations and insights on the design process. The survey followed the PRISMA guidelines. IEEExplore, ACM Digital Library, Scopus, and PubMed, were systematically searched for relevant studies that describe the use of voice-based systems in therapeutic context. 633 studies were screened, of which 9 studies met the inclusion criteria. The literature survey reveals a high degree of diversity among the identified studies regarding therapy form and level of implementation. Also, the range of utilized VA-technology and design principles is quite broad. Following this, the field of VA-supported therapy is still in an exploratory phase and further research is necessary to establish a level of consistency among studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SMART stands for Specific, Measurable, Achievable, Realistic, and Time-based.

  2. 2.

    Conversational Actions for the Google Assistant platform are discontinued from 13 June 2023 on (https://developers.google.com/assistant/ca-sunset).

  3. 3.

    see https://cloud.google.com/dialogflow [11, 31].

  4. 4.

    https://rasa.com/product/rasa-platform/.

  5. 5.

    https://www.jovo.tech/.

References

  1. ACOG Committee: COG committee opinion no. 757: Screening for perinatal depression. Obstetr. Gynecol. 132(5) (2018). https://doi.org/10.1097/AOG.0000000000002927

  2. Attkisson, C., Zwick, R.: The client satisfaction questionnaire: psychometric properties and correlations with service utilization and psychotherapy outcome. Eval. Program Plann. 5(3), 233–237 (1982). https://doi.org/10.1016/0149-7189(82)90074-X

    Article  Google Scholar 

  3. Aymerich-Franch, L., Ferrer, I.: Investigating the use of speech-based conversational agents for life coaching. Int. J. Hum.-Comput. Stud. 159 (2022). https://doi.org/10.1016/j.ijhcs.2021.102745

  4. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum.-Comput. Interact. 24(6), 574–594 (2008). https://doi.org/10.1080/10447310802205776

    Article  Google Scholar 

  5. Bickmore, T., Rubin, A., Simon, S.: Substance use screening using virtual agents: towards automated screening, brief intervention, and referral to treatment (SBIRT). In: Proceedings of the ACM International Conference on Intelligent Virtual Agents (2020). https://doi.org/10.1145/3383652.3423869

  6. Boß, L., Lehr, D., Reis, D., Vis, C., Riper, H., Berking, M., Ebert, D.: Reliability and validity of assessing user satisfaction with web-based health interventions. J. Med. Internet Res. 18(8) (2016). https://doi.org/10.2196/jmir.5952

  7. Brooke, J.: SUS: A ‘Quick and Dirty’ Usability Scale. CRC Press (1996)

    Google Scholar 

  8. Busch, M., Kania, M., Assmann, T., Siegert, I.: Radlogistik als anwendungsgebiet für digitale sprachassistenten - ein diskussionsbeitrag. In: Elektronische Sprachsignalverarbeitung 2023. Tagungsband der 34. Konferenz. Studientexte zur Sprachkommunikation, vol. 107, pp. 220–227. TUDpress, Munich (2023)

    Google Scholar 

  9. Catania, F., Spitale, M., Garzotto, F.: Toward the introduction of google assistant in therapy for children with neurodevelopmental disorders: an exploratory study. In: Extended Abstracts of the 2021 ACM CHI (2021). https://doi.org/10.1145/3411763.3451666

  10. Chang, M., Michael, T., Möller, S., Schlangen, D.: The power of conversation flow in video conference tools: evaluation of speaker change cues. In: Niebuhr, O., Lundmark, M.S., Weston, H. (eds.) Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2022, pp. 81–88. TUDpress, Dresden (2022)

    Google Scholar 

  11. Cheng, A., Raghavaraju, V., Kanugo, J., Handrianto, Y.P., Shang, Y.: Development and evaluation of a healthy coping voice interface application using the google home for elderly patients with type 2 diabetes. In: 15th IEEE Annual Consumer Communications & Networking Conference (2018). https://doi.org/10.1109/CCNC.2018.8319283

  12. Conde-Caballero, D., Rivero-Jiménez, B., Cipriano-Crespo, C., Jesus-Azabal, M., Garcia-Alonso, J., Mariano-Juárez, L.: Treatment adherence in chronic conditions during ageing: uses, functionalities, and cultural adaptation of the assistant on care and health offline (acho) in rural areas. J. Pers. Med. 11(3) (2021). https://doi.org/10.3390/jpm11030173

  13. Crawford, J.R., Henry, J.D.: The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample. Br. J. Clin. Psychol. 43, 245–265 (2004)

    Article  Google Scholar 

  14. Diener, E., Emmons, R.A., Larsen, R.J., Griffin, S.: The satisfaction with life scale. J. Pers. Assess. 49(1), 71–75 (1985). https://doi.org/10.1207/s15327752jpa4901_13

    Article  Google Scholar 

  15. Gotthardt, M., Striegl, J., Loitsch, C., Weber, G.: Voice assistant-based CBT for depression in students: effects of empathy-driven dialog management. In: Miesenberger, K., Kouroupetroglou, G., Mavrou, K., Manduchi, R., Covarrubias Rodriguez, M., Penáz, P. (eds.) ICCHP-AAATE 2022. LNCS, vol. 13341, pp. 451–461. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08648-9_52

    Chapter  Google Scholar 

  16. Haase, P., Nikolov, A., Trame, J., Kozlov, A., Herzig, D.: Alexa, Ask Wikidata! Voice interaction with knowledge graphs using Amazon Alexa. In: Proceedings of the ISWC 2017 (2017)

    Google Scholar 

  17. Hamilton, D., Lane, J., Gaston, P., Patton, J., Macdonald, D., Simpson, A., Howie, C.: Assessing treatment outcomes using a single question: the net promoter score. Bone Joint J. 96-B(5), 622–628 (2014). https://doi.org/10.1302/0301-620X.96B5.32434

  18. Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Szwillus, G., Ziegler, J. (eds.) Mensch & Computer 2003, Berichte des German Chapter of the ACM, vol. 57, pp. 187–196. Vieweg+Teubner, Wiesbaden (2003)

    Chapter  Google Scholar 

  19. Hosier, J., Zhou, Y., Sharma, N., Gurbani, V.K.: Lightweight domain adaptation: a filtering pipeline to improve accuracy of an automatic speech recognition (ASR) engine. In: 4th ACAI. ACM (2022). https://doi.org/10.1145/3508546.3508641

  20. Karrer, K., Glaser, C., Clemens, C., Bruder, C.: Technikaffinität erfassen - der Fragebogen TA-EG, vol. 8. VDI-Verl (2009)

    Google Scholar 

  21. Kinsella, B.: Nearly 90 Million U.S. Adults Have Smart Speakers, Adoption Now Exceeds One-Third of Consumers. voicebot.ai (2020). https://perma.cc/336P-2C77. Accessed 28 Apr 2020

  22. Kroenke, K., Spitzer, R., Williams, J.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606–13 (2001). https://doi.org/10.1046/j.1525-1497.2001.016009606.x

    Article  Google Scholar 

  23. Kumar, A., et al.: Just ask: building an architecture for extensible self-service spoken language understanding. arXiv preprint arXiv:1711.00549 (2017)

  24. Lesage, F., Berjot, S., Deschamps, F.: Clinical stress assessment using a visual analogue scale. Occup. Med. 62, 600–605 (2012). https://doi.org/10.1093/occmed/kqs140

    Article  Google Scholar 

  25. Li, J., Maharjan, B., Xie, B., Tao, C.: A personalized voice-based diet assistant for caregivers of alzheimer disease and related dementias: system development and validation. J. Med. Internet Res. 22(9) (2020). https://doi.org/10.2196/19897

  26. McTear, M.: Conversation modelling for chatbots: current approaches and future directions. In: Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2018, pp. 175–185 (2018)

    Google Scholar 

  27. McTear, M., Callejas, Z., Griol, D.: The conversational interface: talking to smart devices. In: The Conversational Interface: Talking to Smart Devices, pp. 1–422 (2016). https://doi.org/10.1007/978-3-319-32967-3/COVER

  28. Minge, M.: Nutzererleben messen mit dem meCUE 2.0 - Ein Tool für alle Fälle? In: Dachselt, R., Weber, G. (eds.) Mensch und Computer 2018 - Workshopband. GI, Bonn (2018). https://doi.org/10.18420/muc2018-ws16-0485

  29. Neyer, F.J., Felber, J., Gebhardt, C.: Entwicklung und validierung einer kurzskala zur erfassung von technikbereitschaft. Diagnostica 58(2), 87–99 (2012). https://doi.org/10.1026/0012-1924/a000067

    Article  Google Scholar 

  30. Page, M.J., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLOS Med. 18(3), 1–15 (2021). https://doi.org/10.1371/journal.pmed.1003583

    Article  Google Scholar 

  31. Park, D.E., Shin, Y.J., Park, E., Choi, I.A., Song, W.Y., Kim, J.: Designing a voice-bot to promote better mental health: UX design for digital therapeutics on ADHD patients. In: Extended Abstracts of the 2020 ACM CHI (2020). https://doi.org/10.1145/3334480.3382948

  32. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech recognition via large-scale weak supervision (2022). https://doi.org/10.48550/ARXIV.2212.04356, https://arxiv.org/abs/2212.04356

  33. Robitschek, C.: Personal growth initiative: the construct and its measure. Meas. Eval. Couns. Dev. 30(4), 183–198 (1998). https://doi.org/10.1080/07481756.1998.12068941

    Article  Google Scholar 

  34. Scheible, J., Hofmann, F., Reichert, M., Pryss, R., Schickler, M.: Generic concept for integrating voice assistance into smart therapeutic interventions. In: IEEE 35th International Symposium on Computer-Based Medical Systems, pp. 56–61 (2022). https://doi.org/10.1109/CBMS55023.2022.00017

  35. Schmidt, M., Braunger, P.: A survey on different means of personalized dialog output for an adaptive personal assistant. In: Adjunct Publication of the 26th UMAP, pp. 75–81. ACM, New York (2018). https://doi.org/10.1145/3213586.3226198

  36. Schneider, E.E., Schönfelder, S., Domke-Wolf, M., Wessa, M.: Measuring stress in clinical and nonclinical subjects using a German adaptation of the perceived stress scale. Int. J. Clin. Health Psychol. 20(2), 173–181 (2020). https://doi.org/10.1016/j.ijchp.2020.03.004

    Article  Google Scholar 

  37. Schrepp, M., Thomaschewski, J.: Design and validation of a framework for the creation of user experience questionnaires. Int. J. Interact. Multimed. Artif. Intell. 7(5), 88–95 (2019). https://doi.org/10.9781/ijimai.2019.06.006

    Article  Google Scholar 

  38. Serpil Tas, R.A.: Nutzung von sprachassistenten in deutschland. In: Sprachassistenten - Anwendungen, Implikationen, Entwicklungen : ITG-Workshop : Magdeburg, p. 39 (2020)

    Google Scholar 

  39. Siegert: “Alexa in the wild” - Collecting Unconstrained Conversations with a Modern Voice Assistant in a Public Environment. In: Proceedings of The 12th LREC, pp. 608–612. ELRA, Marseille (2020)

    Google Scholar 

  40. Siegert, I., Busch, M., Krüger, J.: Does users’ system evaluation influence speech behavior in HCI?-First insights from the engineering and psychological perspective. In: Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2020, pp. 241–248 (2020)

    Google Scholar 

  41. Siegert, I., Busch, M., Metzner, S., Junne, F., Krüger, J.: Music-guided imagination and digital voice assistant - study design and first results on the application of voice assistants for music-guided stress reduction. In: Salvendy, G., Wei, J. (eds.) HCII 2022. LNCS, vol. 13337, pp. 347–362. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05014-5_29

    Chapter  Google Scholar 

  42. Silber-Varod, V., Siegert, I., Jokisch, O., Sinha, Y., Geri, N.: A cross-language study of selected speech recognition systems. J. Appl. Knowl. Manage.: OJAKM 9, 1–15 (2021). https://doi.org/10.36965/OJAKM.2021.9(1)1-15

  43. Striegl, J., Gotthardt, M., Loitsch, C., Weber, G.: Investigating the usability of voice assistant-based CBT for age-related depression. In: Miesenberger, K., Kouroupetroglou, G., Mavrou, K., Manduchi, R., Covarrubias Rodriguez, M., Penáz, P. (eds.) ICCHP-AAATE 2022. LNCS, vol. 13341, pp. 432–441. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08648-9_50

    Chapter  Google Scholar 

  44. Wendemuth, A., Biundo, S.: A companion technology for cognitive technical systems. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) Cognitive Behavioural Systems. LNCS, vol. 7403, pp. 89–103. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34584-5_7

    Chapter  Google Scholar 

  45. Xiong, W., Wu, L., Droppo, J., Huang, X., Stolcke, A.: The Microsoft 2017 conversational speech recognition system. In: Proceedinbngs of the IEEE ICASSP-2018, Calgary, Kanada, pp. 5934–5938 (2018)

    Google Scholar 

  46. Yang, S., Lee, J., Sezgin, E., Bridge, J., Lin, S.: Clinical advice by voice assistants on postpartum depression: cross-sectional investigation using apple Siri, Amazon Alexa, Google assistant, and Microsoft Cortana. JMIR Mhealth Uhealth 11(9), 353–360 (2021). https://doi.org/10.2196/24045

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Busch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siegert, I., Busch, M., Metzner, S., Krüger, J. (2023). Voice Assistants for Therapeutic Support – A Literature Review. In: Salvendy, G., Wei, J. (eds) Design, Operation and Evaluation of Mobile Communications . HCII 2023. Lecture Notes in Computer Science, vol 14052. Springer, Cham. https://doi.org/10.1007/978-3-031-35921-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35921-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35920-0

  • Online ISBN: 978-3-031-35921-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics