Abstract
This paper applied quantitative content analysis to investigate the conversations in the Corona channel of the anonymous social media app Jodel. Twenty thousand four hundred seventy-two postings from the German Corona channel have been published between March 3, 2020 and February 13, 2021. Those postings were classified into eleven content categories using an automated approach. The results show that, with an overall share of 41%, postings concerning the coronavirus itself and measures to contain the pandemic predominate. An evaluation of the 20 most frequent terms in the dataset underlines this and additionally shows that fellow humans, questions (#question), and temporal aspects are thematized. Interestingly, negative emotions such as fear, panic and worry are shared. At the same time, despite the more serious context of the Corona channel, humor and the search for entertainment seem to matter. The category denial & conspiracy theories comprises the fewest postings. This implies that Jodel, despite its anonymity, does not provide a breeding ground for conspiracy theories and points to a functioning self-regulation of the community.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Data Availability
The data of our study are publicly available in Zenodo at https://doi.org/10.5281/zenodo.7613095.
References
Ahmad, A.R., Murad, H.R.: The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: Online Questionnaire Study. J. Med. Internet Res. 22(5), 19556 (2020). https://doi.org/10.2196/19556
Ahmed, W., Vidal-Alaball, J., Downing, J., López Seguí, F.: COVID-19 and the 5G conspiracy theory: social network analysis of Twitter data. J. Med. Internet Res. 22(5), 19458 (2020). https://doi.org/10.2196/19458
Braddock, R.: An extension of the ‘Lasswell Formula.’ J. Commun. 8(2), 88–93 (1958). https://doi.org/10.1111/j.1460-2466.1958.tb01138.x
Chen, E., Lerman, K., Ferrara, E.: Tracking social media discourse about the COVID-19 pandemic: development of a public coronavirus Twitter data set. JMIR Public Health Surveill. 6(2), 19273 (2020). https://doi.org/10.2196/19273
Chew, C., Eysenbach, G.: Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS One 5(11), 14118 (2010). https://doi.org/10.1371/journal.pone.0014118
Cinelli, M.: The COVID-19 social media infodemic. Sci. Rep. 10, 16598 (2020). https://doi.org/10.1038/s41598-020-73510-5
Fischer, J., et al.: Clustering social media and messengers by functionality. J. Inf. Sci. Theory Pract. 8(4), 6–19 (2020). https://doi.org/10.1633/JISTaP.2020.8.4.1
Islam, M.S., et al.: COVID-19–related infodemic and its impact on public health: a global social media analysis. Am. J. Trop. Med. Hyg. 103(4), 1621–1629 (2020). https://doi.org/10.4269/ajtmh.20-0812
Johann, M., Wiedel, F., Tonndorf, K., Windscheid, J.: Anonymous online communication between disinhibition, self-disclosure and social identity. A complementary mixed-method study [Conference contribution]. ICA Annual Conference, Fukuoka, Japan (2016)
Jüttner, K., Nowak, P., Scheibe, K., Zimmer, F., Fietkiewicz, K.J.: The Faceless Vicinity: Who Uses Location-Based Anonymous Social Networks Like Jodel and Why? In: Meiselwitz, G. (ed.) HCII 2021. LNCS, vol. 12774, pp. 54–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77626-8_4
Kalman, Y.M., Lewis, S.C., Rafaeli, S.: Social distancing meets mediated conversation. In Proceedings of the 54th Hawaii International Conference on System Sciences (2021). https://doi.org/10.24251/HICSS.2021.351
Kasakowskij, R., Friedrich, N., Fietkiewicz, K.J., Stock, W.G.: Anonymous and non-anonymous user behavior on social media: a case study of Jodel and Instagram. J. Inform. Sci. Theory Pract. 6(3), 25–36 (2018). https://doi.org/10.1633/JISTaP.2018.6.3.3
Laaksonen, S.-M., Rantasila, A.: Rocketing sheep: affective discipline in anonymous mobile social media Jodel during the Covid-19 pandemic. AoIR Selected Papers Internet Res. (2021). https://doi.org/10.5210/spir.v2021i0.12198
Lasswell, H.D.: The structure and function of communication in society. In: L. Bryson (eds.) The Communication of Ideas, pp. 37–51. Harper & Brothers (1948)
Li, J., Xu, Q., Cuomo, R., Purushothaman, V., Mackey, T.: Data mining and content analysis of the chinese social media platform Weibo during the early COVID-19 outbreak: retrospective observational infoveillance study. JMIR Public Health Surveill. 6(2), 18700 (2020). https://doi.org/10.2196/18700
Nowak, P., Jüttner, K., Baran, K.S.: Posting Content, Collecting Points, Staying Anonymous: An Evaluation of Jodel. In: Meiselwitz, G. (ed.) SCSM 2018. LNCS, vol. 10913, pp. 67–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91521-0_6
Prabhakar Kaila, R., Prasad, A. V. K.: Informational flow on Twitter – Corona virus outbreak – Topic modelling approach. Int. J. Adv. Res. Eng. Technol. 11(3), 128–134 (2020). https://ssrn.com/abstract=3565169
Presse- und Informationsamt der Bundesregierung: Coronavirus: Die aktuellen Fallzahlen im Überblick (2022). https://www.bundesregierung.de/breg-de/themen/coronavirus
Rafi, M.S.: Dialogic content analysis of misinformation about COVID-19 on social media in Pakistan. Linguist. Lit. Rev. 6(2), 131–143 (2020)
Rufai, S.R., Bunce, C.: World leaders’ usage of Twitter in response to the COVID-19 pandemic: a content analysis. J. Public Health 42(3), 510–516 (2020). https://doi.org/10.1093/pubmed/fdaa049
Seidenschnur, T.: A typology of social characters and various means of control: an analysis of communication during the early stages of the corona pandemic in Germany. Eur. Soc. 23(1), 923–941 (2021). https://doi.org/10.1080/14616696.2020.1857422
Stechemesser, A., Wenz, L., Levermann, A.: Corona crisis fuels racially profiled hate in social media networks. EClinicalMedicine 23, 100372 (2020). https://doi.org/10.1016/j.eclinm.2020.100372
Vesterinen, J.: The effects of information technology on student life during the COVID-19 pandemic [Master’s thesis, University of Jyväskylä]. JYX Digital Repository (2021). http://urn.fi/URN:NBN:fi:jyu-202106093605
Zimmer, F., Scheibe, K., Stock, W.G.: A Model for Information Behavior Research on Social Live Streaming Services (SLSSs). In: Meiselwitz, G. (ed.) SCSM 2018. LNCS, vol. 10914, pp. 429–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91485-5_33
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jüttner, K., Nowak, P., Imeri, A., Stock, W.G. (2023). Anonymous COVID-19 Channel on Jodel: A Quantitative Content Analysis. In: Coman, A., Vasilache, S. (eds) Social Computing and Social Media. HCII 2023. Lecture Notes in Computer Science, vol 14026. Springer, Cham. https://doi.org/10.1007/978-3-031-35927-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-35927-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35926-2
Online ISBN: 978-3-031-35927-9
eBook Packages: Computer ScienceComputer Science (R0)