Abstract
This article proposes an adaptive gamification approach based on a Multi-Criteria Recommendation System (MCRS) for Collaborative Location-based Collecting Systems, adapting the gamification to each user, taking into account her preferences and the project’s objectives as a multi-criteria scenario. Specifically, the potentially recommended items are dynamically generated gamification elements, and the recommendation criteria are defined considering two points of view: user preferences and project objectives. Finally, the article includes an evaluation of the proposal and then a discussion of the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Adomavicius, G., Kwon, Y.O.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 847–880. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_25
Adomavicius, G., Manouselis, N., Kwon, Y.O.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 769–803. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_24
Böckle, M., Novak, J., Bick, M.: Towards adaptive gamification: a synthesis of current developments. Research Papers (2017). https://aisel.aisnet.org/ecis2017_rp/11/
Busch, M., et al.: Using player type models for personalized game design - an empirical investigation. Interact. Design Architect. J.28, 145–163 (2016)
Cochero, J.: Appear: a citizen science mobile app to map the habitat quality of continental waterbodies. Ecologia Austral. 28, 467–479 (2018)
Cochero, J., Pattori, L., Balsalobre, A., Ceccarelli, S., Marti, G.: A convolutional neural network to recognize Chagas disease vectors using mobile phone images. Eco. Inform. 68, 101587 (2022)
Dalponte Ayastuy, M., Torres, D.: Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection. J. Comput. Sci. Technol. 22(1), e05 (2022). https://doi.org/10.24215/16666038.22.e05. https://journal.info.unlp.edu.arjcst/article/view/1943
Dalponte Ayastuy, M., Torres, D., Fernández, A.: Adaptive gamification in Collaborative systems, a systematic mapping study. Comput. Sci. Rev. 39, 100333 (2021). https://doi.org/10.1016/j.cosrev.2020.100333. https://www.sciencedirect.com/science/article/pii/S1574013720304330
Dalponte Ayastuy, M., Torres, D.: Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification. In: Proceedings of the XXI International Conference on Human Computer Interaction. Interacción 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3471391.3471431
Dalponte Ayastuy, M., Torres, D., Fernández, A.: A model of adaptive gamification in collaborative location-based collecting systems. In: Degen, H., Ntoa, S. (eds.) Artificial Intelligence in HCI. HCII 2022. Lecture Notes in Computer Science, vol. 13336, pp. 201–216. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05643-7_13
Heeter, C., Magerko, B., Medler, B., Lee, Y.H.: Impacts of forced serious game play on vulnerable subgroups. Int. J. Gaming Comput. Mediat. Simul. 3(3), 34–53 (2011). https://doi.org/10.4018/jgcms.2011070103
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)
Iversen, S.: In the double grip of the game: Challenge and Fallout 3. Game Studies 12 (2012). https://www.gamestudies.org/1202/articles/in_the_double_grip_of_the_game
Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an introduction. Cambridge University Press (2010)
Koren, Y., Rendle, S., Bell, R.: Advances in collaborative filtering. Recommender Systems Handbook, pp. 91–142 (2021)
Martin, A., Zarate, P., Camillieri, G.: A multi-criteria recommender system based on users’ profile management. In: Zopounidis, C., Doumpos, M. (eds.) Multiple Criteria Decision Making. MCDM, pp. 83–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-39292-9_5
Nugent, J.: Inaturalist. Science Scope 41(7), 12–13 (2018)
Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. Recommender Systems Handbook, pp. 1–34 (2015)
Shani, G., Gunawardana, A.: Evaluating recommendation systems. Recommender Systems Handbook, pp. 257–297 (2011)
Tondello, G.F., Orji, R., Nacke, L.E.: Recommender systems for personalized gamification. In: Adjunct publication of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 425–430 (2017)
Vahlo, J., Karhulahti, V.M.: Challenge types in gaming validation of video game challenge inventory (CHA). Int. J. Hum.-Comput. Stud. 143, 102473 (2020). https://doi.org/10.1016/j.ijhcs.2020.102473. https://www.sciencedirect.com/science/article/pii/S1071581920300756
Vohland, K., et al.: The Science of Citizen Science. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4
Zhao, Z., Arya, A., Orji, R., Chan, G.: Effects of a personalized fitness recommender system using gamification and continuous player modeling: System design and long-term validation study. JMIR Ser. Games 8(4), e19968 (2020). https://doi.org/10.2196/19968. https://games.jmir.org/2020/4/e19968/
Zichermann, G., Cunningham, C.: Gamification by design: implementing game mechanics in web and mobile apps. O’Reilly Media, Inc. (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dalponte Ayastuy, M., Fernández, A., Torres, D. (2023). Fits Like a Game: A Multi-criteria Adaptive Gamification for Collaborative Location-Based Collecting Systems. In: Fang, X. (eds) HCI in Games. HCII 2023. Lecture Notes in Computer Science, vol 14046. Springer, Cham. https://doi.org/10.1007/978-3-031-35930-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-35930-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35929-3
Online ISBN: 978-3-031-35930-9
eBook Packages: Computer ScienceComputer Science (R0)