Skip to main content

Fits Like a Game: A Multi-criteria Adaptive Gamification for Collaborative Location-Based Collecting Systems

  • Conference paper
  • First Online:
HCI in Games (HCII 2023)

Abstract

This article proposes an adaptive gamification approach based on a Multi-Criteria Recommendation System (MCRS) for Collaborative Location-based Collecting Systems, adapting the gamification to each user, taking into account her preferences and the project’s objectives as a multi-criteria scenario. Specifically, the potentially recommended items are dynamically generated gamification elements, and the recommendation criteria are defined considering two points of view: user preferences and project objectives. Finally, the article includes an evaluation of the proposal and then a discussion of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adomavicius, G., Kwon, Y.O.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 847–880. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_25

    Chapter  Google Scholar 

  2. Adomavicius, G., Manouselis, N., Kwon, Y.O.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 769–803. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_24

    Chapter  Google Scholar 

  3. Böckle, M., Novak, J., Bick, M.: Towards adaptive gamification: a synthesis of current developments. Research Papers (2017). https://aisel.aisnet.org/ecis2017_rp/11/

  4. Busch, M., et al.: Using player type models for personalized game design - an empirical investigation. Interact. Design Architect. J.28, 145–163 (2016)

    Google Scholar 

  5. Cochero, J.: Appear: a citizen science mobile app to map the habitat quality of continental waterbodies. Ecologia Austral. 28, 467–479 (2018)

    Google Scholar 

  6. Cochero, J., Pattori, L., Balsalobre, A., Ceccarelli, S., Marti, G.: A convolutional neural network to recognize Chagas disease vectors using mobile phone images. Eco. Inform. 68, 101587 (2022)

    Article  Google Scholar 

  7. Dalponte Ayastuy, M., Torres, D.: Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection. J. Comput. Sci. Technol. 22(1), e05 (2022). https://doi.org/10.24215/16666038.22.e05. https://journal.info.unlp.edu.arjcst/article/view/1943

  8. Dalponte Ayastuy, M., Torres, D., Fernández, A.: Adaptive gamification in Collaborative systems, a systematic mapping study. Comput. Sci. Rev. 39, 100333 (2021). https://doi.org/10.1016/j.cosrev.2020.100333. https://www.sciencedirect.com/science/article/pii/S1574013720304330

  9. Dalponte Ayastuy, M., Torres, D.: Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification. In: Proceedings of the XXI International Conference on Human Computer Interaction. Interacción 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3471391.3471431

  10. Dalponte Ayastuy, M., Torres, D., Fernández, A.: A model of adaptive gamification in collaborative location-based collecting systems. In: Degen, H., Ntoa, S. (eds.) Artificial Intelligence in HCI. HCII 2022. Lecture Notes in Computer Science, vol. 13336, pp. 201–216. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05643-7_13

  11. Heeter, C., Magerko, B., Medler, B., Lee, Y.H.: Impacts of forced serious game play on vulnerable subgroups. Int. J. Gaming Comput. Mediat. Simul. 3(3), 34–53 (2011). https://doi.org/10.4018/jgcms.2011070103

  12. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  13. Iversen, S.: In the double grip of the game: Challenge and Fallout 3. Game Studies 12 (2012). https://www.gamestudies.org/1202/articles/in_the_double_grip_of_the_game

  14. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an introduction. Cambridge University Press (2010)

    Google Scholar 

  15. Koren, Y., Rendle, S., Bell, R.: Advances in collaborative filtering. Recommender Systems Handbook, pp. 91–142 (2021)

    Google Scholar 

  16. Martin, A., Zarate, P., Camillieri, G.: A multi-criteria recommender system based on users’ profile management. In: Zopounidis, C., Doumpos, M. (eds.) Multiple Criteria Decision Making. MCDM, pp. 83–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-39292-9_5

    Chapter  Google Scholar 

  17. Nugent, J.: Inaturalist. Science Scope 41(7), 12–13 (2018)

    Google Scholar 

  18. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. Recommender Systems Handbook, pp. 1–34 (2015)

    Google Scholar 

  19. Shani, G., Gunawardana, A.: Evaluating recommendation systems. Recommender Systems Handbook, pp. 257–297 (2011)

    Google Scholar 

  20. Tondello, G.F., Orji, R., Nacke, L.E.: Recommender systems for personalized gamification. In: Adjunct publication of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 425–430 (2017)

    Google Scholar 

  21. Vahlo, J., Karhulahti, V.M.: Challenge types in gaming validation of video game challenge inventory (CHA). Int. J. Hum.-Comput. Stud. 143, 102473 (2020). https://doi.org/10.1016/j.ijhcs.2020.102473. https://www.sciencedirect.com/science/article/pii/S1071581920300756

  22. Vohland, K., et al.: The Science of Citizen Science. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58278-4

  23. Zhao, Z., Arya, A., Orji, R., Chan, G.: Effects of a personalized fitness recommender system using gamification and continuous player modeling: System design and long-term validation study. JMIR Ser. Games 8(4), e19968 (2020). https://doi.org/10.2196/19968. https://games.jmir.org/2020/4/e19968/

  24. Zichermann, G., Cunningham, C.: Gamification by design: implementing game mechanics in web and mobile apps. O’Reilly Media, Inc. (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Dalponte Ayastuy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalponte Ayastuy, M., Fernández, A., Torres, D. (2023). Fits Like a Game: A Multi-criteria Adaptive Gamification for Collaborative Location-Based Collecting Systems. In: Fang, X. (eds) HCI in Games. HCII 2023. Lecture Notes in Computer Science, vol 14046. Springer, Cham. https://doi.org/10.1007/978-3-031-35930-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35930-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35929-3

  • Online ISBN: 978-3-031-35930-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics