Skip to main content

Road Scene Risk Estimation Using Driving Video

  • Conference paper
  • First Online:
Cross-Cultural Design (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14023))

Included in the following conference series:

  • 989 Accesses

Abstract

In this study, we propose a method for potential risk estimation of road scenes from driving videos and investigate the relationship between the potential risk estimation and the risk perception of humans. We employ a frame prediction method and define scenes where the frame prediction accuracy decreases as risky scenes. We also use the scene depth estimated from the color image and use the prediction error of the scene depth as another risk criteria. The relationship between the proposed risk criteria and the risk perception of humans was evaluated by subject experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borowsky, A., Shinar, D., Oron-Gilad, T.: Age, skill, and hazard perception in driving. Accid. Anal. Prev. 42(4), 1240–1249 (2010)

    Article  Google Scholar 

  2. Oprea, S., et al.: A review on deep learning techniques for video prediction. IEEE Trans. PAMI 44(6), 2806–2825 (2022)

    Article  Google Scholar 

  3. Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and unsupervised learning. In: ICLR (2017)

    Google Scholar 

  4. Makansi, O., Ilg, E., Cicek, Ö., Brox, T.: Overcoming limitations of mixture density networks: a sampling and fitting framework for multimodal future prediction. In: CVPR (2019)

    Google Scholar 

  5. Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under uncertainty. In: CVPR (2018)

    Google Scholar 

  6. Hu, A., Cotter, F., Mohan, N., Gurau, C., Kendall, A.: Probabilistic future prediction for video scene understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 767–785. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_45

    Chapter  Google Scholar 

  7. Chan, F.-H., Chen, Y.-T., Xiang, Yu., Sun, M.: Anticipating accidents in dashcam videos. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 136–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_9

    Chapter  Google Scholar 

  8. Yao, Y., Mingze, X., Wang, Y., Crandall, D.J., Atkins, E.M.: Unsupervised traffic accident detection in first-person videos. In: IROS (2019)

    Google Scholar 

  9. Bao, W., Yu, Q., Kong, Y.: Uncertainty-based traffic accident anticipation with spatio-temporal relational learning. In: ACM MultiMedia (2020)

    Google Scholar 

  10. Yang, X., Gao, Y., Luo, H., Liao, C., Cheng, K.-T.: Bayesian DeNet: monocular depth prediction and frame-wise fusion with synchronized uncertainty. IEEE Trans. Multimedia 21(11), 2701–2713 (2019)

    Article  Google Scholar 

  11. Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from video in the wild: unsupervised monocular depth learning from unknown cameras. In: CVPR (2019)

    Google Scholar 

  12. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Iiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kishimoto, M., Iiyama, M. (2023). Road Scene Risk Estimation Using Driving Video. In: Rau, PL.P. (eds) Cross-Cultural Design. HCII 2023. Lecture Notes in Computer Science, vol 14023. Springer, Cham. https://doi.org/10.1007/978-3-031-35939-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35939-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35938-5

  • Online ISBN: 978-3-031-35939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics