Abstract
In this study, we propose a method for potential risk estimation of road scenes from driving videos and investigate the relationship between the potential risk estimation and the risk perception of humans. We employ a frame prediction method and define scenes where the frame prediction accuracy decreases as risky scenes. We also use the scene depth estimated from the color image and use the prediction error of the scene depth as another risk criteria. The relationship between the proposed risk criteria and the risk perception of humans was evaluated by subject experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Borowsky, A., Shinar, D., Oron-Gilad, T.: Age, skill, and hazard perception in driving. Accid. Anal. Prev. 42(4), 1240–1249 (2010)
Oprea, S., et al.: A review on deep learning techniques for video prediction. IEEE Trans. PAMI 44(6), 2806–2825 (2022)
Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and unsupervised learning. In: ICLR (2017)
Makansi, O., Ilg, E., Cicek, Ö., Brox, T.: Overcoming limitations of mixture density networks: a sampling and fitting framework for multimodal future prediction. In: CVPR (2019)
Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under uncertainty. In: CVPR (2018)
Hu, A., Cotter, F., Mohan, N., Gurau, C., Kendall, A.: Probabilistic future prediction for video scene understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 767–785. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_45
Chan, F.-H., Chen, Y.-T., Xiang, Yu., Sun, M.: Anticipating accidents in dashcam videos. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 136–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_9
Yao, Y., Mingze, X., Wang, Y., Crandall, D.J., Atkins, E.M.: Unsupervised traffic accident detection in first-person videos. In: IROS (2019)
Bao, W., Yu, Q., Kong, Y.: Uncertainty-based traffic accident anticipation with spatio-temporal relational learning. In: ACM MultiMedia (2020)
Yang, X., Gao, Y., Luo, H., Liao, C., Cheng, K.-T.: Bayesian DeNet: monocular depth prediction and frame-wise fusion with synchronized uncertainty. IEEE Trans. Multimedia 21(11), 2701–2713 (2019)
Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from video in the wild: unsupervised monocular depth learning from unknown cameras. In: CVPR (2019)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kishimoto, M., Iiyama, M. (2023). Road Scene Risk Estimation Using Driving Video. In: Rau, PL.P. (eds) Cross-Cultural Design. HCII 2023. Lecture Notes in Computer Science, vol 14023. Springer, Cham. https://doi.org/10.1007/978-3-031-35939-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-35939-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35938-5
Online ISBN: 978-3-031-35939-2
eBook Packages: Computer ScienceComputer Science (R0)