Skip to main content

Description Quivers for Compact Representation of Concept Lattices and Ensembles of Decision Trees

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2023)

Abstract

In this paper we introduce and study description quivers as compact representations of concept lattices and respective ensembles of decision trees. Formally, description quivers are directed multigraphs where vertices represent concept intents and (multiple) edges represent generators of intents. We study some properties of description quivers and shed light on their use for describing state-of-the-art symbolic machine learning models based on decision trees. We also argue that a concept lattice can be considered as a cornerstone in constructing an efficient machine learning model. We show that the proposed description quivers allow us to fuse decision trees just as we can sum linear regressions, while proposing a way to select the most important rules in decision models, just as we can select the most important coefficients in regressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Coenen, F. (2003), The LUCS-KDD Discretised/normalised ARM and CARM Data Library, http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/, Department of Computer Science, The University of Liverpool, UK.

References

  1. Aldinucci, T., Civitelli, E., Di Gangi, L., Sestini, A.: Contextual Decision Trees. arXiv preprint arXiv:2207.06355 (2022)

  2. Bělohlávek, R., De Baets, B., Outrata, J., Vychodil, V.: Characterizing trees in concept lattices. Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 16, 1–15 (2008)

    Google Scholar 

  3. Bělohlávek, R., De Baets, B., Outrata, J., Vychodil, V.: Inducing decision trees via concept lattices. Int. J. Gen Syst 38(4), 455–467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, New York (1984)

    Google Scholar 

  6. Buzmakov, A., Dudyrev, E., Kuznetsov, S.O., Makhalova, T., Napoli, A.: Experimental study of concise representations of concepts and dependencies. In: Cordero, P., Krídlo, O. (eds.) Proceedings of the Sixteenth International Conference on Concept Lattices and Their Applications (CLA 2022), pp. 117–132. CEUR Workshop Proceedings 3308, CEUR-WS.org (2022)

    Google Scholar 

  7. Dudyrev, E., Kuznetsov, S.O.: Decision concept lattice vs. decision trees and random forests. In: Braud, A., Buzmakov, A., Hanika, T., Le Ber, F. (eds.) ICFCA 2021. LNCS (LNAI), vol. 12733, pp. 252–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77867-5_16

    Chapter  MATH  Google Scholar 

  8. Dudyrev, E., Kuznetsov, S.O.: Summation of Decision Trees. In: Kuznetsov, S.O., Napoli, A., Rudolph, S. (eds.) Proceedings of the 9th International Workshop FCA4AI co-located with IJCAI 2021, pp. 99–104. CEUR Workshop Proceedings 2972, CEUR-WS.org (2021)

    Google Scholar 

  9. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999). https://doi.org/10.1007/978-3-030-77867-5

    Book  MATH  Google Scholar 

  10. Hanika, T., Hirth, J.: Conceptual Views on Tree Ensemble Classifiers. arXiv preprint arXiv:2302.05270 (2023)

  11. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_25

    Chapter  MATH  Google Scholar 

  12. Strecht, P.: A survey of merging decision trees data mining approaches. In: Proceedings of the 10th Doctoral Symposium in Informatics Engineering (DSIE 2015), pp. 36–47 (2015)

    Google Scholar 

  13. Wille, R.: Line diagrams of hierarchical concept systems. Knowl. Organ. 11(2), 77–86 (1984). Nomos Verlagsgesellschaft mbH & Co. KG

    Google Scholar 

Download references

Acknowledgments

The work on Sects. 1 and 2 was done by Sergei O. Kuznetsov under support of the Russian Science Foundation under grant 22-11-00323 and performed at HSE University, Moscow, Russia.

Egor Dudyrev and Amedeo Napoli are carrying out this research work as part of the French ANR-21-CE23-0023 SmartFCA Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor Dudyrev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dudyrev, E., Kuznetsov, S.O., Napoli, A. (2023). Description Quivers for Compact Representation of Concept Lattices and Ensembles of Decision Trees. In: Dürrschnabel, D., López Rodríguez, D. (eds) Formal Concept Analysis. ICFCA 2023. Lecture Notes in Computer Science(), vol 13934. Springer, Cham. https://doi.org/10.1007/978-3-031-35949-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35949-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35948-4

  • Online ISBN: 978-3-031-35949-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics