Skip to main content

The Dynamic Update of Mobile Apps: A Research Design with HMM Method

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14038))

Included in the following conference series:

  • 678 Accesses

Abstract

The essential attribute of mobile apps is their dynamic update reflected by the weekly new versions. To gain a competitive advantage in the fierce competition, developers optimize their update strategy to improve app performance. However, the impact of the dynamic update on app performance is still unknown. This study proposes an approach to capture the sequential update of mobile apps in digital platform. Specifically, Hidden Markov Models (HMM) are established to estimate the influence of sequential updates on mobile app performance. As a theoretical paper, this research proposes that the update strategy determines the transmission among different levels of user satisfaction, which is the hidden states in HMM. Then, the transmission of user satisfaction influences app performance. The critical contribution of our study is that the process of mobile apps update is depicted by a dynamic approach. In this study, we propose the research design and discuss the implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, X., Zhang, B., Zhang, Z., et al.: A sentiment-statistical approach for identifying problematic mobile app updates based on user reviews. Information 11(3) (2020)

    Google Scholar 

  2. Lin, F.Y., Zhao, J., Chi, M.M.: A study on temporal effects of different types of mobile application updates. Sustainability 14(3) (2022)

    Google Scholar 

  3. Banker, R.D., Davis, G.B., Slaughter, S.A.: Software development practices, software complexity, and software maintenance performance: a field study. Manage. Sci. 44(4), 433–450 (1998)

    Article  MATH  Google Scholar 

  4. Cavusoglu, H., Cavusoglu, H., Zhang, J.: Security patch management: share the burden or share the damage? Manage. Sci. 54(4), 657–670 (2008)

    Article  Google Scholar 

  5. Foerderer, J., Heinzl, A.: Product updates: attracting new consumers versus alienating existing ones. SSRN Electron. J. (2017)

    Google Scholar 

  6. Hassan, S., Shang, W., Hassan, A.E.: An empirical study of emergency updates for top android mobile apps. Empir. Softw. Eng. 22(1), 505–546 (2016). https://doi.org/10.1007/s10664-016-9435-7

    Article  Google Scholar 

  7. Zhou, G., Song, P.J., Wang, Q.S.: Survival of the fittest: understanding the effectiveness of update speed in the ecosystem of software platforms. J. Organ. Comput. Electron. Commer. 28(3), 234–251 (2018)

    Article  Google Scholar 

  8. Lin, J., Sugiyama, K., Kan, M.-Y., et al.: New and improved: modeling versions to improve app recommendation. In: 37th Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval on Proceedings, Australia, pp. 647–656, ACM Digital Library (2014)

    Google Scholar 

  9. Tian, H., Zhao, J.: Antecedents and consequences of app update: an integrated research framework. In: Cho, W., Fan, M., Shaw, M.J., Yoo, B., Zhang, H. (eds.) WEB 2017. LNBIP, vol. 328, pp. 64–78. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99936-4_6

    Chapter  Google Scholar 

  10. Lee, G., Raghu, T.S.: Determinants of mobile apps’ success: evidence from the app store market. J. Manag. Inf. Syst. 31(2), 133–169 (2014)

    Article  Google Scholar 

  11. Danaf, M., Becker, F., Song, X., et al.: Online discrete choice models: applications in personalized recommendations. Decis. Support Syst. 119, 35–45 (2019)

    Article  Google Scholar 

  12. Zhao, X., Tian, J., Xue, L.: Herding and software adoption: a re-examination based on post-adoption software discontinuance. J. Manag. Inf. Syst. 37(2), 484–509 (2020)

    Article  Google Scholar 

  13. Gokgoz, Z.A., Ataman, M.B., Van Bruggen, G.H.: There’s an app for that! understanding the drivers of mobile application downloads. J. Bus. Res. 123, 423–437 (2021)

    Article  Google Scholar 

  14. Medema, S.G.: The “subtle processes of economic reasoning”: marshall, becker, and theorizing about economic man and other-regarding behavior. In: Fiorito, L., Scheall, S., Suprinyak, C.E. (eds.) Research Annual, pp. 43–73. Emerald Group Publishing Limited (2015)

    Google Scholar 

  15. Chen, R., Wang, Q., Xu, W.: Mining user requirements to facilitate mobile app quality upgrades with big data. Electron. Commerce Res. Appl. 38 (2019)

    Google Scholar 

  16. Garg, R., Telang, R.: Inferring app demand from publicly available data. MIS Q. 37(4), 1253–1264 (2013)

    Article  Google Scholar 

  17. Sallberg, H., Wang, S., Numminen, E.: The combinatory role of online ratings and reviews in mobile app downloads: an empirical investigation of gaming and productivity apps from their initial app store launch. J. Mark. Anal. (2022)

    Google Scholar 

  18. Hassan, S., Tantithamthavorn, C., Bezemer, C.-P., Hassan, A.E.: Studying the dialogue between users and developers of free apps in the Google Play Store. Empir. Softw. Eng. 23(3), 1275–1312 (2017). https://doi.org/10.1007/s10664-017-9538-9

    Article  Google Scholar 

  19. Liu, H., Wang, Y., Liu, Y., et al.: Supporting features updating of apps by analyzing similar products in App stores. Inf. Sci. 580, 129–151 (2021)

    Article  Google Scholar 

  20. Fleischmann, M., Amirpur, M., Grupp, T., et al.: The role of software updates in information systems continuance—an experimental study from a user perspective. Decis. Support Syst. 83, 83–96 (2016)

    Article  Google Scholar 

  21. Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley, Boston (2002)

    Google Scholar 

  22. Ulrich, K.: The role of product architecture in the manufacturing firm. Res. Policy 24(3), 419–440 (1995)

    Article  Google Scholar 

  23. Heckman, J.J.: Statistical models for discrete panel data. Struct. Anal. Disc. Data Econ. Appl. 114, 178 (1981)

    MATH  Google Scholar 

  24. Chen, W., Wei, X., Zhu, K.X.: Engaging voluntary contributions in online communities: a Hidden Markov Model. Mis Q. 42(1), 83-+ (2018)

    Google Scholar 

  25. Liu, C., Ouzrout, Y., Nongaillard, A., et al.: The reputation evaluation based on optimized hidden markov model in e-commerce. Math. Probl. Eng. 1–11 (2013)

    Google Scholar 

  26. Srivastava, A., Kundu, A., Sural, S., et al.: Credit card fraud detection using Hidden Markov Model. IEEE Trans. Dependable Secure Comput. 5(1), 37–48 (2008)

    Article  Google Scholar 

  27. Li, X., Zhuang, Y., Lu, B., et al.: A multi-stage Hidden Markov Model of customer repurchase motivation in online shopping. Decis. Support Syst. 120, 72–80 (2019)

    Article  Google Scholar 

  28. Hassan, M.R.: A combination of Hidden Markov Model and fuzzy model for stock market forecasting. Neurocomputing 72(16–18), 3439–3446 (2009)

    Article  Google Scholar 

  29. Xu, S., Ma, X., Liu, Y., et al.: Malicious application dynamic detection in real-time API analysis. In: 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) , Chengdu, China, pp. 788–794. IEEE (2016)

    Google Scholar 

  30. Fu, Y., Xiong, H., Lu, X., et al.: Service usage classification with encrypted internet traffic in mobile messaging apps. IEEE Trans. Mob. Comput. 15(11), 2851–2864 (2016)

    Article  Google Scholar 

  31. Zhu, H., Liu, C., Ge, Y., et al.: Popularity modeling for mobile apps: a sequential approach. IEEE Trans. Cybernet. 45(7), 1303–1314 (2014)

    Google Scholar 

  32. Zhang, Y., Li, B., Luo, X., et al.: Personalized mobile targeting with user engagement stages: combining a structural Hidden Markov Model and field experiment. Inf. Syst. Res. 30(3), 787–804 (2019)

    Article  Google Scholar 

  33. Cao, Y., Li, Y.: An intelligent fuzzy-based recommendation system for consumer electronic products. Expert Syst. Appl. 33(1), 230–240 (2007)

    Article  Google Scholar 

  34. Corner, J.L., Buchanan, J.T.: Capturing decision maker preference: experimental comparison of decision analysis and MCDM techniques. Eur. J. Oper. Res. 98(1), 85–97 (1997)

    Article  MATH  Google Scholar 

  35. Scholz, M., Domer, V., Franz, M., et al.: Measuring consumers’ willingness to pay with utility-based recommendation systems. Decis. Support Syst. 72, 60–67 (2015)

    Article  Google Scholar 

  36. Scholz, M., Dorner, V.: Estimating optimal recommendation set sizes for individual consumers 3 (2012)

    Google Scholar 

  37. Huang, S.-L.: Designing utility-based recommender systems for e-commerce: evaluation of preference-elicitation methods. Electron. Commer. Res. Appl. 10(4), 398–407 (2011)

    Article  Google Scholar 

  38. Laskey, K.B., Fischer, G.W.: Estimating utility functions in the presence of response error. Manage. Sci. 33(8), 965–980 (1987)

    Article  MathSciNet  Google Scholar 

  39. Schoemaker, P.J., Waid, C.C.: An experimental comparison of different approaches to determining weights in additive utility models. Manage. Sci. 28(2), 182–196 (1982)

    Article  Google Scholar 

  40. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. IEEE Proc. 77(2), 257–286 (1989)

    Google Scholar 

  41. Hassan, S., Bezemer, C.-P., Hassan, A.E.: Studying bad updates of top free-to-download apps in the Google Play Store. IEEE Trans. Software Eng. 46(7), 773–793 (2020)

    Article  Google Scholar 

  42. Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel Data. MIT Press (2010)

    Google Scholar 

  43. Rossi, P.E., Allenby, G.M.: Bayesian statistics and marketing. Mark. Sci. 22(3), 304–328 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

This research is funded by the National Natural Science Foundation of China (NSFC 72072087) and Laboratory of Data Intelligence and Interdisciplinary Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lele Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Bao, K., Kang, L., Sun, J., Shi, Y. (2023). The Dynamic Update of Mobile Apps: A Research Design with HMM Method. In: Nah, F., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2023. Lecture Notes in Computer Science, vol 14038. Springer, Cham. https://doi.org/10.1007/978-3-031-35969-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35969-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35968-2

  • Online ISBN: 978-3-031-35969-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics