Skip to main content

Learning by Reasoning: An Explainable Hierarchical Association Regularized Deep Learning Method for Disease Prediction

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14038))

Included in the following conference series:

  • 1201 Accesses

Abstract

Multimodal healthcare data provides a huge opportunity for big-data-based disease prediction, supporting the diagnosis and treatment decision-making process for doctors. Many deep learning based methods are developed to yield better performance of multimodal data based disease prediction considering their powerful representation abilities. However, the black-box nature of deep learning methods results in many serious concerns: e.g. the reliability of the prediction performance is questionable; the end-users (i.e., doctors) can not understand the reasons behind the prediction. These issues make it difficult for deep learning based disease prediction systems to apply in practice. Therefore, we aim to tackle the aforementioned challenges and propose an explainable hierarchical association regularized deep learning method to produce interpretable prediction results while maintaining prediction accuracy. The method takes the multimodal healthcare data into consideration for the disease prediction task and constructs a hierarchical association path for each sample. An ingenious loss function is designed to learn consistent features among different data modalities and the disease prediction path with a hierarchical structure. The experimental results based on a public dataset show the superiority of our proposed method. The ablation study and sensitivity analysis verify the effectiveness and necessity of the method design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29 (2019)

    Article  Google Scholar 

  2. Qiu, S., et al.: Multimodal deep learning for Alzheimer’s disease dementia assessment. Nat. Commun. 13(1), 3404 (2022)

    Article  Google Scholar 

  3. Ding, Y., et al.: A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology 290(2), 456–464 (2019)

    Article  Google Scholar 

  4. Leung, K., et al.: Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the osteoarthritis initiative. Radiology 296(3), 584–593 (2020)

    Article  Google Scholar 

  5. Qian, X., et al.: Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nature Biomed. Eng. 5(6), 522–532 (2021)

    Article  Google Scholar 

  6. Han, S., et al.: A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys. Med. Biol. 62(19), 7714 (2017)

    Article  Google Scholar 

  7. Maragatham, G., Devi, S.: LSTM model for prediction of heart failure in big data. J. Med. Syst. 43(5), 1–13 (2019). https://doi.org/10.1007/s10916-019-1243-3

    Article  Google Scholar 

  8. Ali, F., et al.: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion, Information Fusion, vol. 63, 208–222 (2020)

    Google Scholar 

  9. Sekaran, K., Chandana, P., Krishna, N.M., Kadry, S.: Deep learning convolutional neural network (CNN) With Gaussian mixture model for predicting pancreatic cancer. Multimedia Tools Appl. 79(15–16), 10233–10247 (2019). https://doi.org/10.1007/s11042-019-7419-5

    Article  Google Scholar 

  10. Jo, T., Nho, K., Saykin, A.J.: Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data, Front. Aging Neurosci. 11, 220 (2019)

    Google Scholar 

  11. Lin, W., et al.: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front. Neurosci. 12,777 (2018)

    Google Scholar 

  12. Liu, J., Zhang, Z., Razavian, N.: ‘Deep ehr: Chronic disease prediction using medical notes. PMLR, vol. 85, 440–464 (2018)

    Google Scholar 

  13. Oh, M., Zhang, L.: DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci. Rep. 10(1), 6026 (2020)

    Article  Google Scholar 

  14. Kumar, A., et al.: Towards cough sound analysis using the internet of things and deep learning for pulmonary disease prediction. Trans. Emerg. Telecommun. Technol. 33(10), 4184 (2022)

    Google Scholar 

  15. Xiao, C., Choi, E., Sun, J.: Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J. Am. Med. Inform. Assoc. 25(10), 1419–1428 (2018)

    Article  Google Scholar 

  16. Ahmad, M.A., Eckert, C., Teredesai, A.: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 559–560 (August 2018)

    Google Scholar 

  17. Vellido, A.: The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput. Appl. 32(24), 18069–18083 (2019). https://doi.org/10.1007/s00521-019-04051-w

    Article  Google Scholar 

  18. Bai, T., Zhang, S., Egleston, B.L., Vucetic, S.: Interpretable representation learning for healthcare via capturing disease progression through time. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 43–51 (July 2018)

    Google Scholar 

  19. Kwak, H., Chang, J., Choe, B., Park, S., Jung, K.: Interpretable disease prediction using heterogeneous patient records with self-attentive fusion encoder. J. Am. Med. Inform. Assoc. 28(10), 2155–2164 (2021)

    Article  Google Scholar 

  20. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism. Adv. Neural Inf. Proc. Syst. 29 (2016)

    Google Scholar 

  21. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  22. Tang, Z., et al.: Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline. Nat. Commun. 10(1), 1–14 (2019)

    MathSciNet  Google Scholar 

  23. Jha, A., K Aicher, J., R Gazzara, M., Singh, D., Barash, Y.: ‘Enhanced integrated gradients: improving interpretability of deep learning models using splicing codes as a case study’. Genome. Biol., 21(1), 1–22 (2020)

    Google Scholar 

  24. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)

    Article  Google Scholar 

  25. Peng, X., Lu, C.Y., Yi, Z., Tang, H.J.: Connections between nuclear-norm and frobenius-norm-based representations. IEEE Trans. Neural Networks Learn. Syst. 29(1), 218–224 (2018)

    Article  MathSciNet  Google Scholar 

  26. Irvin, J., et al.: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Procced. AAAI Conf. Artif. Intell. 33(01), 590–597 (2019)

    Google Scholar 

  27. Wen, G., Hou, Z., Li, H., Li, D., Jiang, L., Xun, E.: Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn. Comput. 9(5), 597–610 (2017)

    Article  Google Scholar 

  28. Baltrusaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2019)

    Article  Google Scholar 

  29. Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance comparison for person re-identification. Pattern Recogn. 48(10), 2993–3003 (2015)

    Article  Google Scholar 

  30. Koh, P.W., et al.: Concept bottleneck models’. PMLR, vol.119, 5338–5348 (2020)

    Google Scholar 

  31. Pham, H.H., Le, T.T., Tran, D.Q., Ngo, D.T., Nguyen, H.Q.: Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing 437, 186–194 (2021)

    Google Scholar 

  32. Lin, Y.K., Chen, H., Brown, R.A., Li, S.H., Yang, H.J.: Healthcare predictive analytics for risk profiling in chronic care. MIS Q. 41(2), 473–496 (2017)

    Google Scholar 

  33. Massey, F.J., Jr.: The Kolmogorov-smirnov test for goodness of fit. J. Amer. Statistical Assoc. 46(253), 68–78 (1951)

    Article  MATH  Google Scholar 

  34. Hand, D.J.: Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach. Learn. 77(1), 103–123 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant # 71971067, 72271059), the National Social Science Foundation of China (grant # 22AZD136), the Research Fund Program of Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization (grant # 2021501), the Shanghai "Science and Technology Innovation Action Plan" Soft Science Research Project (grant # 22692108300), and the China Postdoctoral Science Foundation, (grant # 2022M722394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, S., Chen, G., Zhang, Z., Zhang, C., Lin, J. (2023). Learning by Reasoning: An Explainable Hierarchical Association Regularized Deep Learning Method for Disease Prediction. In: Nah, F., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2023. Lecture Notes in Computer Science, vol 14038. Springer, Cham. https://doi.org/10.1007/978-3-031-35969-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35969-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35968-2

  • Online ISBN: 978-3-031-35969-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics