Skip to main content

Exploring Learners’ Flow and Related Design Strategies in Educational Games from a Psychic Entropy Perspective

  • Conference paper
  • First Online:
HCI in Games (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14047))

Included in the following conference series:

  • 888 Accesses

Abstract

Flow is a concept derived from positive psychology, which symbolizes a state of profound concentration where one operates at full capacity. Flow experience is one of the evaluation indicators and design objects of educational games. Learning with educational games is a composite process, including playing, learning, reflecting, and other forms of information processing. However, existing flow models and corresponding design principles are generally constructed for entertainment games’ pure fun process. Therefore, the flow models need to be adjusted to guide educational game design. Tracing back to the flow theory’s original argument, the opposite of flow—“psychic entropy” (chaotic state of information and consciousness in mind)—can provide a lens through which researchers might examine the information-processing mechanism associated with flow in educational games. From this vantage point, this study developed an information processing framework for learners in educational games based on Gagne’s information processing theory, explored the factors that may obstruct flow in the learning process, and proposed design strategies to assist learners in experiencing flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shang, J., Pei, L.: Reshaping the learning style: the core value and future application in education of games. China Educ. Technol. (05), 41–49 (2015). (in Chinese)

    Google Scholar 

  2. Annetta, L.A.: The “I’s” have it: a framework for serious educational game design. Rev. Gen. Psychol. 14, 105–113 (2010). https://doi.org/10.1037/a0018985

    Article  Google Scholar 

  3. Nakamura, J., Csikszentmihalyi, M.: The concept of flow. In: Csikszentmihalyi, M. (ed.) Flow and the Foundations of Positive Psychology, pp. 239–263. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9088-8_16

    Chapter  Google Scholar 

  4. Csikszentmihalyi, M.: Learning, “flow”, and happiness. In: Csikszentmihalyi, M. (ed.) Applications of Flow in Human Development and Education: The Collected Works of Mihaly Csikszentmihalyi, pp. 153–172. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9094-9_7

    Chapter  Google Scholar 

  5. Pranantha, D., van der Spek, E., Bellotti, F., Berta, R., DeGloria, A., Rauterberg, M.: Game design and development for learning physics using the flow framework. In: De Gloria, A. (ed.) GALA 2014. LNCS, vol. 9221, pp. 142–151. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22960-7_14

    Chapter  Google Scholar 

  6. Kiili, K., de Freitas, S., Arnab, S., Lainema, T.: The design principles for flow experience in educational games. Procedia Comput. Sci. 15, 78–91 (2012). https://doi.org/10.1016/j.procs.2012.10.060

    Article  Google Scholar 

  7. Bellotti, F., Berta, R., De Gloria, A., Primavera, L.: Adaptive experience engine for serious games. IEEE Trans. Comput. Intell. AI Games 1, 264–280 (2009). https://doi.org/10.1109/TCIAIG.2009.2035923

    Article  Google Scholar 

  8. Bressler, D.M., Bodzin, A.M.: A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. J. Comput. Assist. Learn. 29, 505–517 (2013). https://doi.org/10.1111/jcal.12008

    Article  Google Scholar 

  9. Yang, Q.-F., Chang, S.-C., Hwang, G.-J., Zou, D.: Balancing cognitive complexity and gaming level: effects of a cognitive complexity-based competition game on EFL students’ English vocabulary learning performance, anxiety and behaviors. Comput. Educ. 148, 103808 (2020). https://doi.org/10.1016/j.compedu.2020.103808

    Article  Google Scholar 

  10. Martin-Niedecken, A.L., Rogers, K., Turmo Vidal, L., Mekler, E.D., Márquez Segura, E.: ExerCube vs. personal trainer: evaluating a holistic, immersive, and adaptive fitness game setup. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–15. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290605.3300318

  11. Ninaus, M., Moeller, K., McMullen, J., Kiili, K.: Acceptance of game-based learning and intrinsic motivation as predictors for learning success and flow experience. Int. J. Serious Games 4 (2017). https://doi.org/10.17083/ijsg.v4i3.176

  12. Hong, J.-C., Tai, K.-H., Hwang, M.-Y., Kuo, Y.-C.: Internet cognitive failure affects learning progress as mediated by cognitive anxiety and flow while playing a Chinese antonym synonym game with interacting verbal–analytical and motor-control. Comput. Educ. 100, 32–44 (2016). https://doi.org/10.1016/j.compedu.2016.04.009

    Article  Google Scholar 

  13. Hong, J.-C., Hwang, M.-Y., Tai, K.-H., Lin, P.-H.: The effects of intrinsic cognitive load and gameplay interest on flow experience reflecting performance progress in a Chinese remote association game. Comput. Assist. Lang. Learn. 34, 358–378 (2021). https://doi.org/10.1080/09588221.2019.1614068

    Article  Google Scholar 

  14. Tsai, M.-J., Huang, L.-J., Hou, H.-T., Hsu, C.-Y., Chiou, G.-L.: Visual behavior, flow and achievement in game-based learning. Comput. Educ. 98, 115–129 (2016). https://doi.org/10.1016/j.compedu.2016.03.011

    Article  Google Scholar 

  15. Hsieh, Y.-H., Lin, Y.-C., Hou, H.-T.: Exploring the role of flow experience, learning performance and potential behavior clusters in elementary students’ game-based learning. Interact. Learn. Environ. 24, 178–193 (2016). https://doi.org/10.1080/10494820.2013.834827

    Article  Google Scholar 

  16. Buil, I., Catalán, S., Martínez, E.: The influence of flow on learning outcomes: an empirical study on the use of clickers. Br. J. Edu. Technol. 50, 428–439 (2019)

    Article  Google Scholar 

  17. Csikszentmihalyi, M., Csikszentmihalyi, I.S.: Optimal Experience: Psychological Studies of Flow in Consciousness. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  18. Schrödinger, E.: What is Life?: With Mind and Matter and Autobiographical Sketches. Cambridge University Press, Cambridge (1992). https://doi.org/10.1017/CBO9781139644129

  19. Kotler, S.: The Art of Impossible: A Peak Performance Primer. Harper Wave (2021)

    Google Scholar 

  20. Csikszentmihalyi, M.: Flow. Harper Perennial Modern Classics (2008)

    Google Scholar 

  21. Gagne, R.M.: The Conditions of Learning and Theory of Instruction. Wadsworth Pub. Co., New York (1985)

    Google Scholar 

  22. Lei, Wu., Li, J., Lei, T.: Design entropy: a new approach for evaluating user experience in user interface design. In: Rebelo, F., Soares, M. (eds.) Advances in Ergonomics in Design, pp. 583–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41983-1_53

    Chapter  Google Scholar 

  23. Ho, M.K., Abel, D., Correa, C.G., Littman, M.L., Cohen, J.D., Griffiths, T.L.: People construct simplified mental representations to plan. Nature 606, 129–136 (2022). https://doi.org/10.1038/s41586-022-04743-9

    Article  Google Scholar 

  24. Ibrahim, R., Jaafar, A.: Educational games (EG) design framework: combination of game design, pedagogy and content modeling. In: 2009 International Conference on Electrical Engineering and Informatics, pp. 293–298 (2009). https://doi.org/10.1109/ICEEI.2009.5254771

  25. Hunicke, R., Leblanc, M., Zubek, R.: MDA: a formal approach to game design and game research. In: AAAI Workshop - Technical Report 1 (2004)

    Google Scholar 

  26. Csikszentmihalyi, M., Nakamura, J.: The dynamics of intrinsic motivation: a study of adolescents. In: Csikszentmihalyi, M. (ed.) Flow and the Foundations of Positive Psychology: The Collected Works of Mihaly Csikszentmihalyi, pp. 175–197. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9088-8_12

    Chapter  Google Scholar 

  27. Tao, X.: Dictionary of Education Evaluation. Beijing Normal University Publishing House (1998). (in Chinese)

    Google Scholar 

  28. Melnikoff, D.E., Carlson, R.W., Stillman, P.E.: A computational theory of the subjective experience of flow. Nat. Commun. 13, 2252 (2022). https://doi.org/10.1038/s41467-022-29742-2

    Article  Google Scholar 

  29. Dietrich, A.: Neurocognitive mechanisms underlying the experience of flow. Conscious. Cogn. 13, 746–761 (2004). https://doi.org/10.1016/j.concog.2004.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, S., Huang, W., Zeng, J., Shang, J. (2023). Exploring Learners’ Flow and Related Design Strategies in Educational Games from a Psychic Entropy Perspective. In: Fang, X. (eds) HCI in Games. HCII 2023. Lecture Notes in Computer Science, vol 14047. Springer, Cham. https://doi.org/10.1007/978-3-031-35979-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35979-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35978-1

  • Online ISBN: 978-3-031-35979-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics