Skip to main content

The First Scientiffic Evidence for the Hail Cannon

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

The hail cannon has been used to prevent hail storms since the 19th century. The idea of the hail cannon is to create a sequence of shock waves to prevent the formation of clouds before the hail storm. Modern hail cannons employ a mixture of acetylene and oxygen to ignite a sequence of explosions in the lower chamber traveling through the neck and into the cone of the cannon, creating shock waves. The shock waves propagate upwards to the cloud, and they are supposed to prevent the formation of the cloud. According to Wikipedia, there is no scientific evidence for the hail cannon, even though it is commonly used in several countries. In this paper, we propose a numerical simulation to verify the idea of the hail cannon. We employ isogeometric analysis and variational splitting methods. We compare our numerical results with the experimental data. We show that our numerical simulation is indeed the scientific evidence for the hail cannon. We also compare our numerical simulations with the experimental measurements performed with a drone before and after a sequence of generated shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Businger, J.A., Arya, S.P.S.: Height of the mixed layer in the stably stratified planetary boundary layer. In: Frenkiel, F., Munn, R. (eds.) Turbulent Diffusion in Environmental Pollution, Advances in Geophysics, vol. 18, pp. 73–92. Elsevier (1975)

    Google Scholar 

  2. Anderson, E., et al.: LAPACK Users’ Guide, vol. 9. Siam, Delhi (1999)

    Book  MATH  Google Scholar 

  3. Benson, D.J., et al.: A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to X-FEM. Int. J. Numer. Methods Eng. 83, 765–785 (2010)

    Article  MATH  Google Scholar 

  4. Calo, V., Brasher, N., Bazilevs, Y., Hughes, T.: Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput. Mech. 43(1), 161–177 (2008)

    Article  MATH  Google Scholar 

  5. Chang, K., Hughes, T., Calo, V.: Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall. Comput. Fluids 68, 94–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Changnon, S.A., Ivens, J.L.: History repeated: the forgotten hail cannons of Europe. Bull. Am. Meteorol. Soc. 62(3), 368–375 (1981)

    Article  Google Scholar 

  7. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, New York (2009)

    Book  MATH  Google Scholar 

  8. Curran, J.: Vt. Orchard wakes the neighbors with hail cannon (2018)

    Google Scholar 

  9. Dedè, L., Borden, M.J., Hughes, T.: A user’s view of solving stiff ordinary differential equations. SIAM Rev. 21(1), 1–17 (1979)

    Article  MathSciNet  Google Scholar 

  10. Dede, L., Hughes, T., Lipton, S., Calo, V.: Structural topology optimization with isogeometric analysis in a phase field approach. In: 16th US National Conference on Theoretical and Applied Mechanics, pp. 1–2 (2010)

    Google Scholar 

  11. Duddu, R., Lavier, L.L., Hughes, T.J., Calo, V.M.: A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order b-spline finite elements. Int. J. Numer. Methods Eng. 89(6), 762–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Egger, M.: How it works. Hail Cannon Manufacturer (2022)

    Google Scholar 

  13. Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gomez, H., Hughes, T.J., Nogueira, X., Calo, V.M.: Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Comput. Methods Appl. Mech. Eng. 199(25–28), 1828–1840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hossain, S.S., Hossainy, S.F., Bazilevs, Y., Calo, V.M., Hughes, T.J.: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput. Mech. 49(2), 213–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsu, M.C., Akkerman, I., Bazilevs, Y.: High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput. Fluids 49(1), 93–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Inopower: Hail cannon user’s manual (2009)

    Google Scholar 

  18. Lamb, R., Durran, D.: Eddy diffusivities derived from a numerical model of the convective planetary boundary layer. Il Nuovo Cimento C 1, 1–17 (1978)

    Article  Google Scholar 

  19. Łoś, M., Kłusek, A., Hassaan, M.A., Pingali, K., Dzwinel, W., Paszyński, M.: Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations. Comput. Methods in Applied Mechanics and Engineering 343, 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Łoś, M., Paszyński, M.: Stability of non-linear flow in heterogeneous porous media simulations using higher order and continuity basis functions. J. Comput. Appl. Math. 428, 115141 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  21. Łoś, M., Paszyński, M., Kłusek, A., Dzwinel, W.: Application of fast isogeometric L2 projection solver for tumor growth simulations. Comput. Methods Appl. Mech. Eng. 316, 1257–1269 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Łoś, M., Woźniak, M., Muga, I., Paszyński, M.: Three-dimensional simulations of the airborne COVID-19 pathogens using the advection-diffusion model and alternating-directions implicit solver. Bull. Pol. Acad. Sci.: Tech. Sci. 69(4), e137125 (2021)

    Google Scholar 

  23. Łoś, M., Woźniak, M., Paszyński, M., Dalcin, L., Calo, V.M.: Dynamics with matrices possessing Kronecker product structure. Procedia Comput. Sci. 51, 286–295 (2015)

    Article  Google Scholar 

  24. Łoś, M., Woźniak, M., Paszyński, M., Lenharth, A., Hassaan, M.A., Pingali, K.: IGA-ADS: isogeometric analysis finite element method using alternating directions solver. Comput. Phys. Commun. 217, 99–116 (2017)

    Article  MATH  Google Scholar 

  25. Paszyński, M., Siwik, L., Dzwinel, W., Pingali, K.: Supermodeling, a convergent data assimilation meta-procedure used in simulation of tumor progression. Comput. Math. Appl. 113(C), 214–224 (2022)

    Google Scholar 

  26. Pingali, K., et al.: The tao of parallelism in algorithms. In: SIGPLAN, vol. 46, no. 6, pp. 12–25 (2011)

    Google Scholar 

  27. Plumandon, J.R.: Troisieme congres international de defense contre la grele (in French). Ciel et Terre 22, 457–471 (1902)

    Google Scholar 

  28. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn, vol. 9. ISBN 978-1-930934-19-1 (2006)

    Google Scholar 

  29. Shir, C.C.: A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer. J. Atmos. Sci. 30(7), 1327–1339 (1973)

    Article  Google Scholar 

  30. Wieringa, J., Holleman, I.: If cannons cannot fight hail, what else? Meteorol. Z. 15(6), 659–669 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

The Authors are thankful for support from the funds assigned to AGH University of Science and Technology by the Polish Ministry of Science and Higher Education. The work of Albert Oliver-Serra is supported by the “Ayudas para la recualificación del sistema universitario español” grant funded by the ULPGC, the Ministry of Universities by Order UNI/501/2021 of 26 May, and the European Union-Next Generation EU Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Paszyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Misan, K. et al. (2023). The First Scientiffic Evidence for the Hail Cannon. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14073. Springer, Cham. https://doi.org/10.1007/978-3-031-35995-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35995-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35994-1

  • Online ISBN: 978-3-031-35995-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics