Skip to main content

Wildfire Perimeter Detection via Iterative Trimming Method

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

The perimeter of a wildfire is essential for prediction of the spread of a wildfire. Real-time information on an active wildfire can be obtained with Thermal InfraRed (TIR) data collected via aerial surveys or satellite imaging, but often lack the actual numerical parametrization of the wildfire perimeter. As such, additional image processing is needed to formulate closed polygons that provide the numerical parametrization of wildfire perimeters. Although a traditional image segmentation method (ISM) that relies on image gradient or image continuity can be used to process a TIR image, these methods may fail to accurately represent a perimeter or boundary of an object when pixels representing high infrared values are sparse and not connected. An ISM processed TIR image with sparse high infrared pixels often results in multiple disconnected sub-objects rather than a complete object. This paper solves the problem of detecting wildfire perimeters from TIR images in three distinct image processing steps. First, Delaunay triangulation is used to connect the sparse and disconnected high-value infrared pixels. Subsequently, a closed (convex) polygon is created by joining adjacent triangles. The final step consists of an iterative trimming method that removes redundant triangles to find the closed (non-convex) polygon that parametrizes the wildfire perimeter. The method is illustrated on a typical satellite TIR image of a wildfire, and the result is compared to those obtained by traditional ISMs. The illustration shows that the three image processing steps summarized in this paper yield an accurate result for representation of the wildfire perimeter.

Work is supported by WIFIRE Commons and funded by NSF 2040676 and NSF 2134904 under the Convergence Accelerator program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1485–1490 (2005)

    Article  Google Scholar 

  2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

  4. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceedings of the Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1, pp. 105–112. IEEE (2001)

    Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  6. Chiaraviglio, N., et al.: Automatic fire perimeter determination using MODIS hotspots information. In: 2016 IEEE 12th International Conference on e-Science (e-Science), pp. 414–423 (2016)

    Google Scholar 

  7. Delaunay, B., et al.: Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7(793–800), 1–2 (1934)

    Google Scholar 

  8. Ding, L., Goshtasby, A.: On the canny edge detector. Pattern Recogn. 34(3), 721–725 (2001)

    Article  MATH  Google Scholar 

  9. Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53(4), 343–367 (2003)

    Article  Google Scholar 

  10. Fang, H., Srivas, T., de Callafon, R.A., Haile, M.A.: Ensemble-based simultaneous input and state estimation for nonlinear dynamic systems with application to wildfire data assimilation. Control Eng. Pract. 63, 104–115 (2017)

    Article  Google Scholar 

  11. Finney, M.A.: FARSITE, Fire Area Simulator-model development and evaluation. No. 4, US Department of Agriculture, Forest Service, Rocky Mountain Research Station (1998)

    Google Scholar 

  12. Engquist, B. (ed.): Encyclopedia of Applied and Computational Mathematics. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-540-70529-1

    Book  MATH  Google Scholar 

  13. Jain, P., Coogan, S.C., Subramanian, S.G., Crowley, M., Taylor, S., Flannigan, M.D.: A review of machine learning applications in wildfire science and management. arXiv preprint arXiv:2003.00646 (2020)

  14. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mandel, J., et al.: Towards a dynamic data driven application system for wildfire simulation. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 632–639. Springer, Heidelberg (2005). https://doi.org/10.1007/11428848_82

    Chapter  Google Scholar 

  16. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 17, pp. 137–154. San Francisco (1985)

    Google Scholar 

  17. Ononye, A.E., Vodacek, A., Saber, E.: Automated extraction of fire line parameters from multispectral infrared images. Remote Sens. Environ. 108(2), 179–188 (2007)

    Article  Google Scholar 

  18. Rong, W., Li, Z., Zhang, W., Sun, L.: An improved canny edge detection algorithm. In: 2014 IEEE International Conference on Mechatronics and Automation, pp. 577–582. IEEE (2014)

    Google Scholar 

  19. Schroeder, W., Oliva, P., Giglio, L., Quayle, B., Lorenz, E., Morelli, F.: Active fire detection using landsat-8/oli data. Remote Sens. Environ. 185, 210–220 (2016). landsat 8 Science Results

    Google Scholar 

  20. Srivas, T., Artés, T., de Callafon, R.A., Altintas, I.: Wildfire spread prediction and assimilation for FARSITE using ensemble Kalman filtering. Procedia Comput. Sci. 80, 897–908 (2016)

    Article  Google Scholar 

  21. Subramanian, A., Tan, L., de Callafon, R.A., Crawl, D., Altintas, I.: Recursive updates of wildfire perimeters using barrier points and ensemble Kalman filtering. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 225–236. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_18

    Chapter  Google Scholar 

  22. Toulouse, T., Rossi, L., Campana, A., Celik, T., Akhloufi, M.A.: Computer vision for wildfire research: an evolving image dataset for processing and analysis. Fire Saf. J. 92, 188–194 (2017)

    Article  Google Scholar 

  23. Valero, M.M., Rios, O., Mata, C., Pastor, E., Planas, E.: An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires. Fire Saf. J. 91, 835–844 (2017). fire Safety Science: Proceedings of the 12th International Symposium

    Google Scholar 

  24. Valero, M., Rios, O., Pastor, E., Planas, E.: Automated location of active fire perimeters in aerial infrared imaging using unsupervised edge detectors. Int. J. Wildland Fire 27(4), 241–256 (2018)

    Article  Google Scholar 

  25. Yi, F., Moon, I.: Image segmentation: a survey of graph-cut methods. In: 2012 International Conference on Systems and Informatics (ICSAI2012), pp. 1936–1941. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. de Callafon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, L., Hu, Y., Tan, S., de Callafon, R.A., Altıntaş, I. (2023). Wildfire Perimeter Detection via Iterative Trimming Method. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14073. Springer, Cham. https://doi.org/10.1007/978-3-031-35995-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35995-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35994-1

  • Online ISBN: 978-3-031-35995-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics