Skip to main content

User Popularity Preference Aware Sequential Recommendation

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14073))

Included in the following conference series:

  • 808 Accesses

Abstract

In recommender systems, users’ preferences for item popularity are diverse and dynamic, which reveals the different items that users prefer. Therefore, identifying user popularity preferences are significant for personalized recommendations. Although many methods have analyzed user popularity preferences, most of them only consider particular types of popularity preferences, leading to inappropriate recommendations for users who have other popularity preferences. To comprehensively study user popularity preferences, we propose a User Popularity preference aware Sequential Recommendation (UPSR) method. By sequentially perceiving user behaviors, UPSR captures the type and the evolution of user popularity preferences. Furthermore, UPSR employs contrastive learning to gather similar users and enhance user interest encoding. Then, we can match items and user popularity preferences more accurately and make more proper recommendations. Extensive experiments validate that UPSR not only outperforms the state-of-the-art methods but also reduces popularity bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://grouplens.org/datasets/movielens/1m/.

  2. 2.

    http://jmcauley.ucsd.edu/data/amazon/.

References

  1. Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling popularity bias in learning-to-rank recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems (2017)

    Google Scholar 

  2. Abdollahpouri, H., Burke, R., Mobasher, B.: Managing popularity bias in recommender systems with personalized re-ranking. In: The Thirty-Second International Flairs Conference (2019)

    Google Scholar 

  3. Anelli, V.W., Di Noia, T., Di Sciascio, E., Ragone, A., Trotta, J.: Local popularity and time in top-n recommendation. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11437, pp. 861–868. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15712-8_63

    Chapter  Google Scholar 

  4. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. In: CoRR (2016)

    Google Scholar 

  5. van den Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. In: KDD (2018)

    Google Scholar 

  6. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR (2021)

    Google Scholar 

  7. Cho, S.M., Park, E., Yoo, S.: Meantime: mixture of attention mechanisms with multi-temporal embeddings for sequential recommendation. In: RecSys (2020)

    Google Scholar 

  8. Dacrema, M.F., Cremonesi, P., Jannach, D.: Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In: RecSys (2019)

    Google Scholar 

  9. Dai, F., Gu, X., Li, B., Zhang, J., Qian, M., Wang, W.: Meta-graph based attention-aware recommendation over heterogeneous information networks. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11537, pp. 580–594. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22741-8_41

    Chapter  Google Scholar 

  10. Dai, F., Gu, X., Wang, Z., Qian, M., Li, B., Wang, W.: Heterogeneous side information-based iterative guidance model for recommendation. In: Proceedings of the 2021 International Conference on Multimedia Retrieval, pp. 55–63 (2021)

    Google Scholar 

  11. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT (2019)

    Google Scholar 

  12. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Computer Science Review 40, 100379 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ge, Y., et al.: Understanding echo chambers in e-commerce recommender systems. In: SIGIR (2020)

    Google Scholar 

  14. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  15. Gruson, A., et al.: Offline evaluation to make decisions about playlist recommendation algorithms. In: WSDM (2019)

    Google Scholar 

  16. Gupta, P., Sharma, A., Malhotra, P., Vig, L., Shroff, G.: Causer: causal session-based recommendations for handling popularity bias. In: CIKM (2021)

    Google Scholar 

  17. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)

    Google Scholar 

  18. Hansen, C., et al.: Contextual and sequential user embeddings for large-scale music recommendation. In: Fourteenth ACM Conference on Recommender Systems (2020)

    Google Scholar 

  19. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. In: ACM TIIS (2015)

    Google Scholar 

  20. Hendrycks, D., Gimpel, K.: Bridging nonlinearities and stochastic regularizers with gaussian error linear units. CoRR abs/1606.08415 (2016)

    Google Scholar 

  21. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommendations. In: CIKM (2018)

    Google Scholar 

  22. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: ICLR (2016)

    Google Scholar 

  23. Ji, Y., Sun, A., Zhang, J., Li, C.: A re-visit of the popularity baseline in recommender systems. In: SIGIR (2020)

    Google Scholar 

  24. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n recommender systems. In: SIGKDD (2013)

    Google Scholar 

  25. Kang, W., McAuley, J.J.: Self-attentive sequential recommendation. In: ICDM (2018)

    Google Scholar 

  26. Krichene, W., Rendle, S.: On sampled metrics for item recommendation. In: SIGKDD (2020)

    Google Scholar 

  27. Lex, E., Kowald, D., Schedl, M.: Modeling popularity and temporal drift of music genre preferences. Trans. Int. Soc. Music In. Retrieval 3(1) (2020)

    Google Scholar 

  28. Li, J., Wang, Y., McAuley, J.: Time interval aware self-attention for sequential recommendation. In: WSDM (2020)

    Google Scholar 

  29. Liu, Y., Ge, K., Zhang, X., Lin, L.: Real-time attention based look-alike model for recommender system. In: SIGKDD (2019)

    Google Scholar 

  30. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR (2015)

    Google Scholar 

  31. Nagatani, K., Sato, M.: Accurate and diverse recommendation based on users’ tendencies toward temporal item popularity. In: RecSys (2017)

    Google Scholar 

  32. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  33. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  34. Qian, M., Gu, X., Chu, L., Dai, F., Fan, H., Li, B.: Flexible order aware sequential recommendation. In: Proceedings of the 2022 International Conference on Multimedia Retrieval, pp. 109–117 (2022)

    Google Scholar 

  35. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: WWW (2010)

    Google Scholar 

  36. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_1

  37. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: WWW (2015)

    Google Scholar 

  38. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR (2014)

    Google Scholar 

  39. Sun, F., et al.: BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer. In: CIKM (2019)

    Google Scholar 

  40. Tan, Q., et al.: Sparse-interest network for sequential recommendation. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining (2021)

    Google Scholar 

  41. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  42. Wang, S., Hu, L., Wang, Y., Cao, L., Sheng, Q.Z., Orgun, M.A.: Sequential recommender systems: challenges, progress and prospects. In: IJCAI (2019)

    Google Scholar 

  43. Xie, X., et al.: Contrastive learning for sequential recommendation. In: ICDE (2022)

    Google Scholar 

  44. Zhang, M., Liu, X., Liu, W., Zhou, A., Ma, H., Mei, T.: Multi-granularity reasoning for social relation recognition from images. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 1618–1623. IEEE (2019)

    Google Scholar 

  45. Zhang, Y., et al.: Causal intervention for leveraging popularity bias in recommendation. In: SIGIR (2021)

    Google Scholar 

  46. Zhou, K., et al.: S3-rec: self-supervised learning for sequential recommendation with mutual information maximization. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 1893–1902 (2020)

    Google Scholar 

  47. Zhu, X., Li, J., Liu, Y., Liao, J., Wang, W.: Operation-level progressive differentiable architecture search. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 1559–1564. IEEE (2021)

    Google Scholar 

  48. Zhu, Z., He, Y., Zhao, X., Zhang, Y., Wang, J., Caverlee, J.: Popularity-opportunity bias in collaborative filtering. In: WSDM (2021)

    Google Scholar 

Download references

Acknowledgments

This work is supported by program XDC02050200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, M., Dai, F., Gu, X., Fan, H., Liu, D., Li, B. (2023). User Popularity Preference Aware Sequential Recommendation. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14073. Springer, Cham. https://doi.org/10.1007/978-3-031-35995-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35995-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35994-1

  • Online ISBN: 978-3-031-35995-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics