Skip to main content

Enhancing Dynamism of IoT Service Composition

  • Conference paper
  • First Online:
Technological Innovation for Connected Cyber Physical Spaces (DoCEIS 2023)

Abstract

As IoT systems become more complex and interconnected, their ability to adapt to changes becomes essential. However, this dynamism needs to be addressed from early on and at different levels. Failure to recognize this will hinder the resulting system's flexibility. This article presents an analysis of composition approaches and technologies based on several criteria, in an attempt to identify common patterns or constructs that enhance specific dynamic traits which should be considered during development. Then, the identified elements within those criteria's methods and tools are mapped against the desired dynamic traits. By using cross classification, it is possible to recognize the most adequate alignment of dynamic traits among approaches. A comparative analysis is produced containing our findings. These outcomes are expected to contribute to the research community in developing more flexible distributed dynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An N/A value means the attribute is not a concern of the approach.

References

  1. GSMA: IoT connections forecast: The rise of enterprise. https://gsma.com/iot/resources/iot-connections-forecast-the-rise-of-enterprise/

  2. Nitti, M., Atzori, L., Cvijikj, I.P.: Friendship selection in the social Internet of Things: challenges and possible strategies. IEEE Internet Things J. 2(3), 240ā€“247 (Jun2015). https://doi.org/10.1109/JIOT.2014.2384734

    ArticleĀ  Google ScholarĀ 

  3. Angulo, P., GuzmĆ”n, C.C., JimĆ©nez, G., Romero, D.: A service-oriented architecture and its ICT-infrastructure to support eco-efficiency performance monitoring in manufacturing enterprises. Int. J. Comput. Integr. Manuf. 30(1), 202ā€“214 (2017). https://doi.org/10.1080/0951192X.2016.1145810

    ArticleĀ  Google ScholarĀ 

  4. Web of Things (WoT) Security and Privacy Guidelines, https://www.w3.org/TR/wot-security/

  5. Torres, C.E.: Cyber-Physical Spaces (December 2018). https://power-mi.com/content/cyber-physical-spaces

  6. Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Service composition approaches in IoT: a systematic review. J. Netw. Comput. Appl. 120, 61ā€“77 (2018). https://doi.org/10.1016/j.jnca.2018.07.013

    ArticleĀ  Google ScholarĀ 

  7. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231ā€“274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Glinz, M.: On non-functional requirements. In: 15th IEEE International Requirements Engineering Conference (RE 2007), pp. 21ā€“26 (October 2007). https://doi.org/10.1109/RE.2007.45

  9. Vesyropoulos, N., Georgiadis, C.K., Ilioudis, C.: Analyzing the selection and dynamic composition of web services in e-commerce transactions. In: Proceedings of the Fifth Balkan Conference in Informatics. pp. 130ā€“135. BCI'12, Association for Computing Machinery, New York, NY, USA (September 2012). https://doi.org/10.1145/2371316.2371341

  10. Ma, H., Bastani, F., Yen, I.L., Mei, H.: QoS-driven service composition with reconfigurable services. IEEE Trans. Serv. Comput. 6(1), 20ā€“34 (2013). https://doi.org/10.1109/TSC.2011.21

    ArticleĀ  Google ScholarĀ 

  11. Hamzei, M., Navimipour, N.J.: Toward efficient service composition techniques in the Internet of Things. Internet of Things J. 5(5), 3774ā€“3787 (2018). https://doi.org/10.1109/JIOT.2018.2861742

    ArticleĀ  Google ScholarĀ 

  12. Vakili, A., Navimipour, N.J.: Comprehensive and systematic review of the service composition mechanisms in the cloud environments. J. Netw. Comput. Appl. 81, 24ā€“36 (2017). https://doi.org/10.1016/j.jnca.2017.01.005

    ArticleĀ  Google ScholarĀ 

  13. Yao, Y., Chen, H.: A rule-based web service composition approach. In: 2010 Sixth International Conference on Autonomic and Autonomous Systems, pp. 150ā€“155 (March 2010). https://doi.org/10.1109/ICAS.2010.29

  14. Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38(2), 129ā€“154 (2006). https://doi.org/10.1080/03052150500384759

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: GACE: a meta-heuristic based in the hybridization of Genetic Algorithms and Cross Entropy methods for continuous optimization. Expert Syst. Appl. (Elsevier) 55, 508ā€“519 (2016). https://doi.org/10.1016/j.eswa.2016.02.034

    ArticleĀ  Google ScholarĀ 

  16. Asghari, S., Navimipour, N.J.: Review and comparison of meta-heuristic algorithms for service composition in cloud computing. Majlesi J. Multim. Process. 44(4) (2015)

    Google ScholarĀ 

  17. Zhang, L., Yu, S., Ding, X., Wang, X.: Research on IoT RESTful web service asynchronous composition based on BPEL. In: 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics. vol. 1, pp. 62ā€“65 (August 2014). https://doi.org/10.1109/IHMSC.2014.23

  18. Arellanes, D., Lau, K.K.: Algebraic service composition for user-centric IoT applications. In: Internet of Things - ICIOT 2018: Third International Conference. vol. 10972 LNCS, pp. 56ā€“69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94370-1_5

  19. Morrison, J.P.: Flow-Based Programming: A New Approach to Application Development. CreateSpace (2010)

    Google ScholarĀ 

  20. Johnston, W., Hanna, J., Millar, R.: Advances in dataflow programming languages. ACM Comput. Surv. 36(1), 1ā€“34 (2004). https://doi.org/10.1145/1013208.1013209

    ArticleĀ  Google ScholarĀ 

  21. Giang, N., Blackstock, M., Lea, R., Leung, V.: Developing IoT applications in the Fog: a distributed dataflow approach. In: Proceedings - 2015 5th International Conference on the Internet of Things, IoT 2015. pp. 155ā€“162 (2015). https://doi.org/10.1109/IOT.2015.7356560

  22. Hens, P., Snoeck, M., Poels, G., De Backer, M.: Process fragmentation, distribution and execution using an event-based interaction scheme. J. Syst. Softw. 89, 170ā€“192 (2014). https://doi.org/10.1016/j.jss.2013.11.1111

    ArticleĀ  Google ScholarĀ 

  23. Open, O.: Web Services Business Process Execution Language (WS-BPEL) version 2.0 (2007). http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

  24. Valderas, P., Torres, V., Pelechano, V.: A microservice composition approach based on the choreography of BPMN fragments. Inf. Softw. Technol. (Elsevier) 127, 106370 (2020). https://doi.org/10.1016/j.infsof.2020.106370

  25. Chafle, G., Chandra, S., Mann, V., Nanda, M.: Decentralized orchestration of composite web services. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track, Papers and Posters, WWW Alt. 2004. pp. 134ā€“143 (2004). https://doi.org/10.1145/1013367.1013390

  26. Decker, G., Kopp, O., Barros, A.: An introduction to service choreographies. Inf. Technol. (De Gruyter) 50(2), 122 (2008). https://doi.org/10.1524/itit.2008.0473

  27. Cherrier, S., Langar, R.: Services organisation in IoT: mixing orchestration and choreography. In: 2018 Global Information Infrastructure and Networking Symposium (GIIS). pp. 1ā€“4 (October 2018). https://doi.org/10.1109/GIIS.2018.8635748

  28. Peltz, C.: Web services orchestration and choreography. IEEE Comput. J. 36(10), 46ā€“52 (2003). https://doi.org/10.1109/MC.2003.1236471

    ArticleĀ  Google ScholarĀ 

  29. Butzin, B., Golatowski, F., Timmermann, D.: Microservices approach for the internet of things. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 1ā€“6 (September 2016). https://doi.org/10.1109/ETFA.2016.7733707

  30. Newman, S.: Building Microservices, 1st edn. O'Reilly Media, Sebastopol (2015)

    Google ScholarĀ 

  31. W3C: Web Services Choreography Description Language (WS-CDL) version 1.0 (2005). https://www.w3.org/TR/ws-cdl-10/

  32. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: extending BPEL for modeling choreographies. In: IEEE International Conference on Web Services (ICWS 2007), pp. 296ā€“303 (July 2007). https://doi.org/10.1109/ICWS.2007.59

  33. Autili, M., Di Salle, A., Gallo, F., Pompilio, C., Tivoli, M.: CHOReVOLUTION: service choreography in practice. Sci. Comput. Program. (Elsevier) 197, 102498 (2020). https://doi.org/10.1016/j.scico.2020.102498

  34. WeiƟ, A., Andrikopoulos, V., SĆ”ez, S.G., Hahn, M., Karastoyanova, D.: ChorSystem: a message-based system for the life cycle management of choreographies. In: Debruyne, C., et al. (eds.) On the Move to Meaningful Internet Systems: OTM 2016 Conferences, LNCS, pp. 503ā€“521. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-330

  35. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of techniques and tools. ACM Comput. Surv. 48(3), 33:1ā€“33:41 (2015). https://doi.org/10.1145/2831270

  36. Alamri, A., Eid, M., El Saddik, A.: Classification of the state-of-the-art dynamic web services composition techniques. Int. J. Web Grid Serv. (InderScience) 2(2), 148ā€“166 (2006)

    ArticleĀ  Google ScholarĀ 

  37. Fujii, K., Suda, T.: Semantics-based dynamic service composition. J. Select. Areas Commun. 23(12), 2361ā€“2372 (2005). https://doi.org/10.1109/JSAC.2005.857202

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This research was funded by FundaĆ§Ć£o para a CiĆŖncia e Tecnologia (FCT) through CEOT's (Center for Electronics, Optoelectronics, and Telecommunications) UIDB/00631/2020 CEOT BASE and UIDP/00631/2020 CEOT PROGRAMƁTICO projects, and the grant UI/BD/152864/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomes, R., Correia, N. (2023). Enhancing Dynamism of IoT Service Composition. In: Camarinha-Matos, L.M., Ferrada, F. (eds) Technological Innovation for Connected Cyber Physical Spaces. DoCEIS 2023. IFIP Advances in Information and Communication Technology, vol 678. Springer, Cham. https://doi.org/10.1007/978-3-031-36007-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36007-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36006-0

  • Online ISBN: 978-3-031-36007-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics