Skip to main content

Hierarchical Classification of Adverse Events Based on Consumer’s Comments

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

This paper focuses on autonomously classifying adverse events based on consumers’ comments regarding health and hygiene products. The data, comprising over 152,000 comments, were collected from e-commerce sources and social media. In the present research, we propose a language-independent approach using machine translation, allowing for unified analysis of data from various countries. Furthermore, this study presents a real-life application, making it potentially beneficial for subsequent scientific research and other business applications. A distinguishing feature of our approach is the efficient modeling of colloquial language instead of medical jargon, which is often the focus of adverse event research. Both hierarchical and non-hierarchical classification approaches were tested using Random Forest and XGBoost classifiers. The proposed feature extraction and selection process enabled us to include tokens important to minority classes in the dictionary. The F1 score was utilized to quantitatively assess the quality of classification. Hierarchical classification allowed for faster classification processes than the non-hierarchical approach for the XGBoost classifier. We obtained promising results for XGBoost; however, further research on a wider range of categories is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.ema.europa.eu/en/glossary/adverse-event. Accessed 27 Jan 2023

  2. Pirmohamed, M., et al.: Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329(7456), 15–19 (2004)

    Article  Google Scholar 

  3. Sarker, A., Gonzalez, G.: Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J. Biomed. Inform. 53, 196–207 (2015)

    Article  Google Scholar 

  4. Zhang, Y., Cui, S., Gao, H.: Adverse drug reaction detection on social media with deep linguistic features. J. Biomed. Inform. 106, 103437 (2020)

    Article  Google Scholar 

  5. Kwa, M., Welty, L.J., Xu, S.: Adverse events reported to the US Food and Drug Administration for cosmetics and personal care products. JAMA Intern. Med. 177(8), 1202–1204 (2017)

    Article  Google Scholar 

  6. CFSAN Adverse Event Reporting System (CAERS) Data Web Posting. https://www.fda.gov/Food/ComplianceEnforcement/ucm494015.htm. Accessed 18 Jan 2023

  7. Wang, J., Yu, L.C., Zhang, X.: Explainable detection of adverse drug reaction with imbalanced data distribution. PLoS Comput. Biol. 18(6), e1010144 (2022)

    Article  Google Scholar 

  8. Alhuzali, H., Ananiadou, S.: Improving classification of adverse drug reactions through using sentiment analysis and transfer learning. In: Proceedings of the 18th BioNLP Workshop and Shared Task, pp. 339–347 (2019)

    Google Scholar 

  9. Gurulingappa, H., Mateen-Rajpu, A., Toldo, L.: Extraction of potential adverse drug events from medical case reports. J. Biomed. Semant. 3(1), 1–10 (2012)

    Article  Google Scholar 

  10. Miranda, D.S.: Automated detection of adverse drug reactions in the biomedical literature using convolutional neural networks and biomedical word embeddings (2018)

    Google Scholar 

  11. Ding, P., Zhou, X., Zhang, X., Wang, J., Lei, Z.: An attentive neural sequence labeling model for adverse drug reactions mentions extraction. IEEE Access 6, 73305–73315 (2018)

    Article  Google Scholar 

  12. Breden, A., Moore, L.: Detecting adverse drug reactions from twitter through domain-specific preprocessing and bert ensembling. arXiv preprint arXiv:2005.06634 (2020)

  13. Sloane, R., Osanlou, O., Lewis, D., Bollegala, D., Maskell, S., Pirmohamed, M.: Social media and pharmacovigilance: a review of the opportunities and challenges. Br. J. Clin. Pharmacol. 80(4), 910–920 (2015)

    Article  Google Scholar 

  14. Ginn, R., et al.: Mining Twitter for adverse drug reaction mentions: a corpus and classification benchmark. In: Proceedings of the Fourth Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing, pp. 1–8 (2014)

    Google Scholar 

  15. Taher, G.: E-commerce: advantages and limitations. Int. J. Acad. Res. Account. Finan. Manage. Sci. 11(1), 153–165 (2021)

    Google Scholar 

  16. Pattanayak, R.K., Kumar, V.S., Raman, K., Surya, M.M., Pooja, M.R.: E-commerce application with analytics for pharmaceutical industry. In: Ranganathan, G., Fernando, X., Piramuthu, S. (eds.) Soft Computing for Security Applications. Advances in Intelligent Systems and Computing, vol. 1428. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-3590-9_22

  17. Tay, E.: Evaluating Bayesian Hierarchical Models and Decision Criteria for the Detection of Adverse Events in Vaccine Clinical Trials (2022)

    Google Scholar 

  18. Freitas, Alex, Carvalho, André: A tutorial on hierarchical classification with applications in bioinformatics. In: Taniar, D. (ed.) Research and Trends in Data Mining Technologies and Applications, pp. 175–208. IGI Global (2007). https://doi.org/10.4018/978-1-59904-271-8.ch007

    Chapter  Google Scholar 

  19. Bisser, S.: Introduction to azure cognitive services. In: Microsoft Conversational AI Platform for Developers, pp. 67–140. Apress, Berkeley, CA (2021). https://doi.org/10.1007/978-1-4842-6837-7_3

  20. Satapathi, A., Mishra, A.: Build a multilanguage text translator using azure cognitive services. In: Developing Cloud-Native Solutions with Microsoft Azure and. NET, pp. 231–248. Apress, Berkeley, CA, (2023)

    Google Scholar 

  21. Wan, Y., et al.: Challenges of neural machine translation for short texts. Comp. Linguist. 48(2), 321–342 (2022)

    Article  MathSciNet  Google Scholar 

  22. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  23. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  24. Shah, K., Patel, H., Sanghvi, D., Shah, M.: A comparative analysis of logistic regression, random forest and KNN models for the text classification. Augment. Hum. Res. 5(1), 1–16 (2020)

    Article  Google Scholar 

  25. Haumahu, J.P., Permana, S.D.H., Yaddarabullah, Y.: Fake news classification for Indonesian news using Extreme Gradient Boosting (XGBoost). In: IOP Conference Series: Materials Science and Engineering, vol. 1098, no. 5, p. 052081. IOP Publishing (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Kaczorowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaczorowska, M., Szymczak, P., Tkachuk, S. (2023). Hierarchical Classification of Adverse Events Based on Consumer’s Comments. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36021-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36020-6

  • Online ISBN: 978-3-031-36021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics