Skip to main content

Implementation of Coupled Numerical Analysis of Magnetospheric Dynamics and Spacecraft Charging Phenomena via Code-To-Code Adapter (CoToCoA) Framework

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

This paper addresses the implementation of a coupled numerical analysis of the Earth’s magnetospheric dynamics and spacecraft charging (SC) processes based on our in-house Code-To-Code Adapter (CoToCoA). The basic idea is that the magnetohydrodynamic (MHD) simulation reproduces the global dynamics of the magnetospheric plasma, and its pressure and density data at local spacecraft positions are provided and used for the SC calculations. This allows us to predict spacecraft charging that reflects the dynamic changes of the space environment. CoToCoA defines three types of independent programs: Requester, Worker, and Coupler, which are executed simultaneously in the analysis. Since the MHD side takes the role of invoking the SC analysis, Requester and Worker positions are assigned to the MHD and SC calculations, respectively. Coupler then supervises necessary coordination between them. Physical data exchange between the models is implemented using MPI remote memory access functions. The developed program has been tested to ensure that it works properly as a coupled physical model. The numerical experiments also confirmed that the addition of the SC calculations has a rather small impact on the MHD simulation performance with up to about 500-process executions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz, S., et al.: Cross-scale: multi-scale coupling in space plasma. Assessment Study Report (2009)

    Google Scholar 

  2. Fukazawa, K., Katoh, Y., Nanri, T., Miyake, Y.: Application of cross-reference framework CoToCoA to macro- and micro-scale simulations of planetary magnetospheres. In: Proceedings of 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), pp. 121–124 (2019)

    Google Scholar 

  3. Katoh, Y., Fukazawa, K., Nanri, T., and Miyake, Y.: Cross-reference simulation by code-to-code adapter (CoToCoA) library for the study of multi-scale physics in planetary magnetospheres. In: Proceedings of 8th International Workshop on Large-scale HPC Application Modernization (LHAM), pp. 223–226 (2021)

    Google Scholar 

  4. Matsumoto, H., Omura, Y.: Computer space plasma physics: simulation techniques and software. Terra Scientific Pub, Tokyo (1993)

    Google Scholar 

  5. Toth, G., et al.: Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. 110, A12226 (2005). https://doi.org/10.1029/2005JA011126

  6. Sugiyama, T., Kusano, K., Hirose, S., Kageyama, A.: MHD-PIC connection model in a magnetosphere-ionosphere coupling system. J. Plasma Phys. 72(6), 945–948 (2006)

    Article  Google Scholar 

  7. Nanri, T., Katoh, Y., Fukazawa, K., Miyake, Y., Nakazawa, K., Zhow, J., and Sunada, Y.: CoToCoA (Code-To-Code Adapter) version 1.2.2. https://doi.org/10.5281/zenodo.5775280

  8. Ogino, T., Walker, R.J., Ashour-Abdalla, M.: A global magnetohydrodynamic simulation of the magnetopause when the interplanetary magnetic field is northward. IEEE Trans. Plasma Sci. 20, 817–828 (1992)

    Article  Google Scholar 

  9. Fukazawa, K., Ogino, T., Walker, R.J.: The configuration and dynamics of the Jovian magnetosphere. J. Geophys. Res. 111, A10207 (2006)

    Article  Google Scholar 

  10. Fukazawa, K., Ueda, M., Inadomi, Y., Aoyagi, M., Umeda, T., and Inoue, K.: Performance analysis of CPU and DRAM power constrained systems with magnetohydrodynamic simulation code. In: Proceedings of 2018 IEEE 20th International Conference High Performance Computing and Communications, pp. 626–631 (2018). https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00113

  11. Whipple, E.C.: Potentials of surfaces in space. Rep. Prog. Phys. 44(11), 1197–1250 (1981)

    Article  Google Scholar 

  12. Miyake, Y., Usui, H.: New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions. Phys. Plasmas 33(3), 258–266 (2019)

    Google Scholar 

  13. Massaro, M. J., Green, T., and Ling, D.: A charging model for three-axis stabilized spacecraft. In: Proceedings of Spacecraft Charging Techology Conference, pp. 237–269 (1977)

    Google Scholar 

  14. Ferguson, D. C., Denig, W. F., Rodriguez, J. V.: Plasma conditions during the Galaxy 15 anomaly and the possibility of ESD from subsurface charging. In: 49th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, pp. 2011–1061. AIAA (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Joint Usage and Research Center for Interdisciplinary Large-Scale Information Infrastructure and Innovative High Performance Computing Infrastructure (project numbers: jh210047-NAH, jh220017, jh230042, hp220040, and hp230046), as well as the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP22K12049. The numerical experiments were carried out using the ITO System at Kyushu University and the Camphor system at Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Miyake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miyake, Y. et al. (2023). Implementation of Coupled Numerical Analysis of Magnetospheric Dynamics and Spacecraft Charging Phenomena via Code-To-Code Adapter (CoToCoA) Framework. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36021-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36020-6

  • Online ISBN: 978-3-031-36021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics