Skip to main content

Chemical Mixing Simulations with Integrated AI Accelerator

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

In this work, we develop a method for integrating an AI model with a CFD solver to predict chemical mixing simulations’ output. The proposed AI model is based on a deep neural network with a variational autoencoder that is managed by our AI supervisor. We demonstrate that the developed method allows us to accurately accelerate the steady-state simulations of chemical reactions performed with the MixIT solver from Tridiagonal solutions.

In this paper, we investigate the accuracy and performance of AI-accelerated simulations, considering three different scenarios: i) prediction in cases with the same geometry of mesh as used during training the model, ii) with a modified geometry of tube in which the ingredients are mixed, iii) with a modified geometry of impeller used to mix the ingredients.

Our AI model is trained on a dataset containing 1500 samples of simulated scenarios and can accurately predict the process of chemical mixing under various conditions. We demonstrate that the proposed method achieves accuracy exceeding 90% and reduces the execution time up to 9 times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, K., Krügener, M., Brown, A., Menhorn, F., Bungartz, H.J., Hartmann, D.: Machine Learning-Based Optimal Mesh Generation in Computational Fluid Dynamics. ArXiv, pp. 1–22 (2021). https://arxiv.org/abs/2102.12923

  2. Iserte, S., Macías, A., Martínez-Cuenca, R., Chiva, S., Paredes, R., Quintana-Ortí, E.S.: Accelerating urban scale simulations leveraging local spatial 3D structure. J. Comput. Sci. 62, 101741 (2022)

    Article  Google Scholar 

  3. Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep fluids: a generative network for parameterized fluid simulations. Comput. Graph. Forum 38(2), 59–70 (2019)

    Article  Google Scholar 

  4. Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine learning-accelerated computational fluid dynamics. Proceed. Nat. Acad. Sci. 118(21), e2101784118 (2021). https://doi.org/10.1073/pnas.2101784118. https://www.pnas.org/doi/abs/10.1073/pnas.2101784118

  5. Kurz, M., Offenhäuser, P., Viola, D., Shcherbakov, O., Resch, M., Beck, A.: Deep reinforcement learning for computational fluid dynamics on HPC systems. J. Comput. Sci. 65, 101884 (2022). https://doi.org/10.1016/j.jocs.2022.101884. https://www.sciencedirect.com/science/article/pii/S1877750322002435

  6. MixIT: the enterprise mixing analysis tool. https://mixing-solution.com/. Accessed 19 Apr 2023

  7. Obiols-Sales, O., Vishnu, A., Malaya, N., Chandramowliswharan, A.: CFDNet: a deep learning-based accelerator for fluid simulations. Proceed. Int. Conf. Supercomput. (2020). https://doi.org/10.1145/3392717.3392772

    Article  Google Scholar 

  8. One-Class Support Vector Machine (SVM) for Anomaly Detection. https://grabngoinfo.com/one-class-support-vector-machine-svm-for-anomalydetection/. Accessed 26 Sept 2021

  9. OpenFOAM. http://www.openfoam.com/. Accessed 19 Apr 2023

  10. OpenFOAM: User Guide: k-epsilon. http://www.openfoam.com/%20documentation/guides/latest/doc/guide-turbulence-ras-k-epsilon.html. Accessed 28 Feb 2023

  11. Panchigar, D., Kar, K., Shukla, S., Mathew, R.M., Chadha, U., Selvaraj, S.K.: Machine learning-based CFD simulations: a review, models, open threats, and future tactics. Neural Comput. Appl. 34(24), 21677–21700 (2022). https://doi.org/10.1007/s00521-022-07838-6

  12. Roh, S., Song, H.J.: Evaluation of Neural Network Emulations for Radiation Parameterization in Cloud Resolving Model. Geophys. Res. Lett. 47(21), e2020GL089444 (2020)

    Google Scholar 

  13. Rojek, K.: Machine learning method for energy reduction by utilizing dynamic mixed precision on GPU-based supercomputers. Concurr. Comput. Practice Exper. 31(6), e4644 (2019). https://doi.org/10.1002/cpe.4644. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4644

  14. Rojek, K., Wyrzykowski, R.: Performance and scalability analysis of AI-accelerated CFD simulations across various computing platforms. In: Singer, J., Elkhatib, Y., Blanco Heras, D., Diehl, P., Brown, N., Ilic, A. (eds.) Euro-Par 2022: Parallel Processing Workshops. Euro-Par 2022. Lecture Notes in Computer Science, vol. 13835. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31209-0_17

  15. Rojek, K., Wyrzykowski, R., Gepner, P.: AI-accelerated CFD simulation based on OpenFOAM and CPU/GPU computing. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12743, pp. 373–385. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77964-1_29

    Chapter  Google Scholar 

  16. Savarese, M., Cuoci, A., De Paepe, W., Parente, A.: Machine learning clustering algorithms for the automatic generation of chemical reactor networks from CFD simulations. Fuel 343, 127945 (2023). https://doi.org/10.1016/j.fuel.2023.127945. https://www.sciencedirect.com/science/article/pii/S0016236123005586

  17. Schannen, M., Bachem, O., Lucic, M.: Recent advances in autoencoder-based representation learning. arXiv preprint arXiv:1812.05069 (2018)

  18. Song, H.J., Kim, P.S.: Effects of Cloud Microphysics on the Universal Performance of Neural Network Radiation Scheme. Geophys. Res. Lett. 49(9), e2022GL098601 (2022)

    Google Scholar 

  19. Song, H.J., et al.: Benefits of stochastic weight averaging in developing neural network radiation scheme for numerical weather prediction. J. Adv. Model. Earth Syst. 14(10), e2021MS002921 (2022)

    Google Scholar 

  20. Srivastava, S., Damodaran, M., Khoo, B.C.: Machine learning surrogates for predicting response of an aero-structural-sloshing system. arXiv preprint (2019)

    Google Scholar 

  21. Statistics How To. https://www.statisticshowto.com/probability-and-statistics/calculus-based-statistics/. Accessed 28 Feb 2023

  22. TensorFlow Core: Mixed precision. http://www.tensorflow.org/guide/mixed_%20precision. Accessed 19 Apr 2023

  23. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating Eulerian fluid simulation with convolutional networks. In: Proceedings 34th International Conference Machine Learning, ICML2017 - Vol. 70, pp. 3424–3433 (2017)

    Google Scholar 

  24. Vinuesa, R., Brunton, S.L.: The potential of machine learning to enhance computational fluid dynamics. arXiv preprint arXiv:2110.02085 (2021)

  25. Wyatt, M.R., Yamamoto, V., Tosi, Z., Karlin, I., Essen, B.V.: Is Disaggregation possible for HPC Cognitive Simulation? In: 2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC), pp. 94–105 (2021). https://doi.org/10.1109/MLHPC54614.2021.00014

  26. Xiao, D., et al.: A reduced order model for turbulent flows in the urban environment using machine learning. Build. Environ. 148, 323–337 (2019)

    Article  Google Scholar 

  27. Yu, W., Zhao, F., Yang, W., Xu, H.: Integrated analysis of CFD simulation data with K-means clustering algorithm for soot formation under varied combustion conditions. Appl. Thermal Eng. 153, 299–305 (2019). https://doi.org/10.1016/j.applthermaleng.2019.03.011. https://www.sciencedirect.com/science/article/pii/S1359431118349172

Download references

Acknowledgements

This research was supported by project no. 020/RID/2018 /19 financed within the program of the Polish Ministry of Science and Higher Education “Regional Initiative of Excellence” (years 2019 - 2023, the amount of financing 12 000 000 PLN). This research was partly supported by the PLGrid infrastructure at ACK Cyfronet AGH in Krakow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rojek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojek, K., Wyrzykowski, R., Gepner, P. (2023). Chemical Mixing Simulations with Integrated AI Accelerator. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36021-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36020-6

  • Online ISBN: 978-3-031-36021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics