Skip to main content

Parallel Algorithm for Concurrent Integration of Three-Dimensional B-Spline Functions

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

In this paper, we discuss the concurrent integration applied to the 3D isogeometric finite element method. It has been proven that integration over individual elements with Gaussian quadrature is independent of each other, and a concurrent algorithm for integrating a single element has been created. The suboptimal integration algorithm over each element is developed as a sequence of basic atomic computational tasks, and the dependency relation between them is identified. We show how to prepare independent sets of tasks that can be automatically executed concurrently on a GPU card. This is done with the help of Diekert’s graph, which expresses the dependency between tasks. The execution time of the concurrent GPU integration is compared with the sequential integration executed on CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AbouEisha, H., Moshkov, M., Calo, V., Paszyński, M., Goik, D., Jopek, K.: Dynamic programming algorithm for generation of optimal elimination trees for multi-frontal direct solver over h-refined grids. Procedia Comput. Sci. 29, 947–959 (2014)

    Article  Google Scholar 

  2. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    Article  MATH  Google Scholar 

  3. Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T.J.R.: A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200, 1367–1378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Boor, C.: Subroutine package for calculating with b-splines. SIAM J. Numer. Anal. 14(3), 441–472 (1971)

    Article  MATH  Google Scholar 

  5. Calo, V.M., Brasher, N.F., Bazilevs, Y., Hughes, T.J.R.: Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput. Mech. 43, 161–177 (2008)

    Article  MATH  Google Scholar 

  6. Chang, K., Hughes, T.J.R., Calo, V.M.: Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall. Comput. Fluids 68, 94–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley (2009)

    Google Scholar 

  8. Cyfronet. https://kdm.cyfronet.pl/portal/Main_page: Cyfronet KDM

  9. Dedè, L., Borden, M.J., Hughes, T.J.R.: Isogeometric analysis for topology optimization with a phase field model. Arch. Comput. Meth. Eng. 19, 427–465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific (1995)

    Google Scholar 

  11. Duddu, R., Lavier, L.L., Hughes, T.J.R., Calo, V.M.: A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order b-spline finite elements. Int. J. Numer. Meth. Eng. 89, 762–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Software 9, 302–325 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear equations. SIAM J. Sci. Stat. Comput. 5, 633–641 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goik, D., Jopek, K., Paszyński, M., Lenharth, A., Nguyen, D., Pingali, K.: Graph grammar based multi-thread multi-frontal direct solver with Galois scheduler. Procedia Comput. Sci. 29, 960–969 (2014)

    Article  Google Scholar 

  15. Gomez, H., Hughes, T.J.R., Nogueira, X., Calo, V.M.: Isogeometric analysis of the isothermal navier-stokes-korteweg equations. Comput. Methods Appl. Mech. Eng. 199, 1828–1840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gurgul, P.: A linear complexity direct solver for h-adaptive grids with point singularities. Procedia Comput. Sci. 29, 1090–1099 (2014)

    Article  Google Scholar 

  17. Hénon, P., Ramet, P., Roman, J.: Pastix: a high-performance parallel direct solver for sparse symmetric definite systems. Parallel Comput. 28, 301–321 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiemstra, R.R., Sangalli, G., Tani, M., Calabrò, F., Hughes, T.J.: Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity. Comput. Methods Appl. Mech. Eng. 355, 234–260 (2019). https://doi.org/10.1016/j.cma.2019.06.020

    Article  MathSciNet  MATH  Google Scholar 

  19. Hossain, S.S., Hossainy, S.F.A., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput. Mech. 49, 213–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsu, M.C., Akkerman, I., Bazilevs, Y.: High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput. Fluids 49, 93–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X.S.: An overview of superlu: algorithms, implementation, and user interface. TOMS Trans. Math. Software 31, 302–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. ORNL. https://www.olcf.ornl.gov/summit/: Summit, Oak Ridge National Laboratory

  23. Szyszka, A., Woźniak, M., Schaefer, R.: Concurrent algorithm for integrating three-dimensional b-spline functions into machines with shared memory such as gpu. Comput. Methods Appl. Mech. Eng. 398, 115201 (2022). https://doi.org/10.1016/j.cma.2022.115201

    Article  MathSciNet  MATH  Google Scholar 

  24. TACC. https://portal.tacc.utexas.edu/user-guides/stampede2: Stampede2 User Guide

  25. Woźniak, M., Szyszka, A., Rojas, S.: A study of efficient concurrent integration methods of b-spline basis functions in IGA-fem. J. Comput. Sci. 64, 101857 (2022). https://doi.org/10.1016/j.jocs.2022.101857

    Article  Google Scholar 

Download references

Acknowledgement

The work of Maciej Woźniak was partially financed by the AGH University of Science and Technology Statutory Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Woźniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szyszka, A., Woźniak, M. (2023). Parallel Algorithm for Concurrent Integration of Three-Dimensional B-Spline Functions. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36021-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36020-6

  • Online ISBN: 978-3-031-36021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics