Skip to main content

Online Runtime Environment Prediction for Complex Colocation Interference in Distributed Streaming Processing

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14074))

Included in the following conference series:

  • 667 Accesses

Abstract

To improve system resource utilization, multiple operators are co-located in the distributed stream processing systems. In the colocation scenarios, the node runtime environment and co-located operators affect each other. The existing methods mainly study the impact of the runtime environment on operator performance. However, there is still a lack of in-depth research on the interference of operator colocation to the runtime environment. It will lead to inaccurate prediction of the performance of the co-located operators, and further affect the effect of operator placement. To solve these problems, we propose an online runtime environment prediction method based on the operator portraits for complex colocation interference. The experimental results show that compared with the existing works, our method can not only accurately predict the runtime environment online, but also has strong scalability and continuous learning ability. It is worth noting that our method exhibits excellent online prediction performance for runtime environments in large-scale colocation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, H., Geng, X., Ma, H.: Learning-driven interference-aware workload parallelization for streaming applications in heterogeneous cluster. IEEE Trans. Parallel Distrib. Syst. 32(1), 1–15 (2021)

    Article  Google Scholar 

  2. Gan, Y., et al.: Seer: leveraging big data to navigate the complexity of performance debugging in cloud microservices. In: Bahar, I., Herlihy, M., Witchel, E., Lebeck, A.R. (eds.) Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. ASPLOS 2019, Providence, RI, USA, 13–17 April 2019, pp. 19–33, ACM (2019)

    Google Scholar 

  3. HoseinyFarahabady, M., Zomaya, A.Y., Tari, Z.: Qos- and contention- aware resource provisioning in a stream processing engine. In: 2017 IEEE International Conference on Cluster Computing. CLUSTER 2017, Honolulu, HI, USA, 5–8 September 2017, pp. 137–146. IEEE Computer Society (2017)

    Google Scholar 

  4. Buddhika, T., Stern, R., Lindburg, K., Ericson, K., Pallickara, S.: Online scheduling and interference alleviation for low-latency, high-throughput processing of data streams. IEEE Trans. Parallel Distrib. Syst. 28(12), 3553–3569 (2017)

    Article  Google Scholar 

  5. Romero, F., Delimitrou, C.: Mage: online and interference-aware scheduling for multi-scale heterogeneous systems. In: Evripidou, S., Stenström, P., O’Boyle, M.F.P. (eds.) Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques. PACT 2018, Limassol, Cyprus, 01–04 November 2018, pp. 19:1–19:13. ACM (2018)

    Google Scholar 

  6. Chen, S., Delimitrou, C., Martínez, J.F.: PARTIES: qos-aware resource partitioning for multiple interactive services. In: Bahar, I., Herlihy, M., Witchel, E., Lebeck, A.R. (eds.) Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. ASPLOS 2019, Providence, RI, USA, 13–17 April 2019, pp. 107–120. ACM (2019)

    Google Scholar 

  7. Zhao, L., Yang, Y., Li, Y., Zhou, X., Li, K.: Understanding, predicting and scheduling serverless workloads under partial interference. In: de Supinski, B.R., Hall, M.W., Gamblin, T. (eds.) International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2021, St. Louis, Missouri, USA, 14–19 November 2021, p. 22. ACM (2021)

    Google Scholar 

  8. Patel, T., Tiwari, D.: CLITE: efficient and qos-aware co-location of multiple latency-critical jobs for warehouse scale computers. In: IEEE International Symposium on High Performance Computer Architecture. HPCA 2020, San Diego, CA, USA, 22–26 February 2020, pp. 193–206. IEEE (2020)

    Google Scholar 

  9. Zhang, Y., Laurenzano, M.A., Mars, J., Tang, L.: Smite: precise qos prediction on real-system SMT processors to improve utilization in warehouse scale computers. In: 47th Annual IEEE/ACM International Symposium on Microarchitecture. MICRO 2014, Cambridge, United Kingdom, 13–17 December 2014, pp. 406–418. IEEE Computer Society (2014)

    Google Scholar 

  10. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and qos-aware cluster management. In: Balasubramonian, R., Davis, A., Adve, S.V. (eds.) Architectural Support for Programming Languages and Operating Systems. ASPLOS 2014, Salt Lake City, UT, USA, 1–5 March 2014, pp. 127–144. ACM (2014)

    Google Scholar 

  11. Xu, R., Mitra, S., Rahman, J., Bai, P., Zhou, B., Bronevetsky, G., Bagchi, S.: Pythia: improving datacenter utilization via precise contention prediction for multiple co-located workloads. In: Ferreira, P., Shrira, L. (eds.) Proceedings of the 19th International Middleware Conference, Middleware 2018, Rennes, France, 10–14 December 2018, pp. 146–160. ACM (2018)

    Google Scholar 

  12. Li, Y., et al.: Gaugur: quantifying performance interference of colocated games for improving resource utilization in cloud gaming. In: Weissman, J.B., Butt, A.R., Smirni, E. (eds.) Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing. HPDC 2019, Phoenix, AZ, USA, 22–29 June 2019, pp. 231–242. ACM (2019)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  14. Dickey, D.A.: Dickey-fuller tests. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 385–388, Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_210

  15. Courtaud, C., Sopena, J., Muller, G., Pérez, D.G.: Improving prediction accuracy of memory interferences for multicore platforms. In: IEEE Real-Time Systems Symposium. RTSS 2019, Hong Kong, SAR, China, 3–6 December 2019, pp. 246–259. IEEE (2019)

    Google Scholar 

  16. Chen, Q., Yang, H., Guo, M., Kannan, R.S., Mars, J., Tang, L.: Prophet: precise qos prediction on non-preemptive accelerators to improve utilization in warehouse-scale computers. In: Chen, Y., Temam, O., Carter, J. (eds.) Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems. ASPLOS 2017, Xi’an, China, 8–12 April 2017, pp. 17–32. ACM (2017)

    Google Scholar 

  17. perf. https://perf.wiki.kernel.org/index.php/Tutorial

  18. Amannejad, Y., Krishnamurthy, D., Far, B.H.: Predicting web service response time percentiles. In: 12th International Conference on Network and Service Management. CNSM 2016, Montreal, QC, Canada, 31 October–4 November 2016, pp. 73–81. IEEE (2016)

    Google Scholar 

  19. Lan, Y., Neagu, D.: Applications of the moving average of nth-order difference algorithm for time series prediction. In: Alhajj, R., Gao, H., Li, J., Li, X., Zaïane, O.R. (eds.) ADMA 2007. LNCS (LNAI), vol. 4632, pp. 264–275. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73871-8_25

    Chapter  Google Scholar 

  20. Geler, Z., Kurbalija, V., Ivanovic, M., Radovanovic, M., Dai, W.: Dynamic time warping: Itakura vs sakoe-chiba. In: Koprinkova-Hristova, P.D., Yildirim, T., Piuri, V., Iliadis, L.S., Camacho, D. (eds.) IEEE International Symposium on INnovations in Intelligent SysTems and Applications. INISTA 2019, Sofia, Bulgaria, 3–5 July 2019, pp. 1–6. IEEE (2019)

    Google Scholar 

  21. Mu, W., Jin, Z., Wang, J., Zhu, W., Wang, W.: BGElasor: elastic-scaling framework for distributed streaming processing with deep neural network. In: Tang, X., Chen, Q., Bose, P., Zheng, W., Gaudiot, J.-L. (eds.) NPC 2019. LNCS, vol. 11783, pp. 120–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30709-7_10

    Chapter  Google Scholar 

  22. Delimitrou, C., Kozyrakis, C.: Paragon: Qos-aware scheduling for heterogeneous datacenters. In: Sarkar, V., Bodík, R. (eds.) Architectural Support for Programming Languages and Operating Systems. ASPLOS 2013, Houston, TX, USA, 16–20 March 2013, pp. 77–88. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Mu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F. et al. (2023). Online Runtime Environment Prediction for Complex Colocation Interference in Distributed Streaming Processing. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36021-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36020-6

  • Online ISBN: 978-3-031-36021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics