Abstract
The mechano-chemical process of clot formation is relevant in both hemostasis and thrombosis. The initial phase of thrombus formation in arterial thrombosis can be described by the mechanical process of platelet adhesion and aggregation via hemodynamic interactions with von Willebrand factor molecules. Understanding the formation and composition of this initial blood clot is crucial to evaluate differentiating factors between hemostasis and thrombosis. In this work a cell-based platelet adhesion and aggregation model is presented to study the initial steps of aggregate formation. Its implementation upon the pre-existing cellular blood flow model HemoCell is explained in detail and the model is tested in a simple case study of initial aggregate formation under arterial flow conditions. The model is based on a simplified constraint-dependent platelet binding process that coarse-grains the most influential processes into a reduced number of probabilistic thresholds. In contrast to existing computational platelet binding models, the present method places the focus on the mechanical environment that enables the formation of the initial aggregate. Recent studies highlighted the importance of elongational flows on von Willebrand factor-mediated platelet adhesion and aggregation. The cell-resolved scale used for this model allows to account for important hemodynamic phenomena such as the formation of a red blood cell free layer and platelet margination. This work focuses on the implementation details of the model and presents its characteristic behavior at various coarse-grained threshold values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abidin, N.A.Z., et al.: A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res. Pract. Thromb. Haemost. 7, 100037 (2023). https://doi.org/10.1016/j.rpth.2023.100037
Auton, M., Zhu, C., Cruz, M.A.: The mechanism of VWF-mediated platelet GPIb\(\upalpha \) binding. Biophys. J . 99(4), 1192–1201 (2010). https://doi.org/10.1016/j.bpj.2010.06.002
Azizi Tarksalooyeh, V.W., Závodszky, G., van Rooij, B.J., Hoekstra, A.G.: Inflow and outflow boundary conditions for 2d suspension simulations with the immersed boundary lattice Boltzmann method. Comput. Fluids 172, 312–317 (2018)
Bergmeier, W., Hynes, R.O.: Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb. Perspect. Biol. 4(2), a005132–a005132 (2011). https://doi.org/10.1101/cshperspect.a005132
Byrnes, J.R., Wolberg, A.S.: Red blood cells in thrombosis. Blood 130(16), 1795–1799 (2017). https://doi.org/10.1182/blood-2017-03-745349
Casa, L.D., Ku, D.N.: Thrombus formation at high shear rates. Ann. Rev. Biomed. Eng. 19(1), 415–433 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044539
Chopard, B., Falcone, J.-L., Kunzli, P., Veen, L., Hoekstra, A.: Multiscale modeling: recent progress and open questions. Multiscale Multidisc. Model. Exp. Des. 1(1), 57–68 (2018). https://doi.org/10.1007/s41939-017-0006-4
Czaja, B., Závodszky, G., Tarksalooyeh, V.A., Hoekstra, A.G.: Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio. J. Roy. Soc. Interface 15(146), 20180485 (2018). https://doi.org/10.1098/rsif.2018.0485
Czaja, B., et al.: The effect of stiffened diabetic red blood cells on wall shear stress in a reconstructed 3d microaneurysm. Comput. Meth. Biomech. Biomed. Eng. 25(15), 1691–1709 (2022). https://doi.org/10.1080/10255842.2022.2034794
Czaja, B., Gutierrez, M., Závodszky, G., de Kanter, D., Hoekstra, A., Eniola-Adefeso, O.: The influence of red blood cell deformability on hematocrit profiles and platelet margination. PLOS Comput. Biol. 16(3), e1007716 (2020). https://doi.org/10.1371/journal.pcbi.1007716. https://dx.plos.org/10.1371/journal.pcbi.1007716
Filipovic, N., Kojic, M., Tsuda, A.: Modelling thrombosis using dissipative particle dynamics method. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1879), 3265–3279 (2008). https://doi.org/10.1098/rsta.2008.0097
Flamm, M.H., Sinno, T., Diamond, S.L.: Simulation of aggregating particles in complex flows by the lattice kinetic Monte Carlo method. J. Chem. Phys. 134(3), 034905 (2011). https://doi.org/10.1063/1.3521395
Fogelson, A.L., Guy, R.D.: Immersed-boundary-type models of intravascular platelet aggregation. Comput. Meth. Appl. Mech. Eng. 197(25–28), 2087–2104 (2008). https://doi.org/10.1016/j.cma.2007.06.030
Fu, H., Jiang, Y., Yang, D., Scheiflinger, F., Wong, W.P., Springer, T.A.: Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat. Commun. 8(1), 324 (2017). https://doi.org/10.1038/s41467-017-00230-2
Gale, A.J.: Continuing education course #2: current understanding of hemostasis. Toxicol. Pathol. 39(1), 273–280 (2010). https://doi.org/10.1177/0192623310389474
de Haan, M., Zavodszky, G., Azizi, V., Hoekstra, A.: Numerical investigation of the effects of red blood cell cytoplasmic viscosity contrasts on single cell and bulk transport behaviour. Appl. Sci. 8(9), 1616 (2018). https://doi.org/10.3390/app8091616
Hao, Y., Závodszky, G., Tersteeg, C., Barzegari, M., Hoekstra, A.G.: Image-based flow simulation of platelet aggregates under different shear rates (2023). https://doi.org/10.1101/2023.02.22.529480
Kamada, H., Imai, Y., Nakamura, M., Ishikawa, T., Yamaguchi, T.: Computational study on thrombus formation regulated by platelet glycoprotein and blood flow shear. Microvasc. Res. 89, 95–106 (2013). https://doi.org/10.1016/j.mvr.2013.05.006
Kamada, H., ichi Tsubota, K., Nakamura, M., Wada, S., Ishikawa, T., Yamaguchi, T.: A three-dimensional particle simulation of the formation and collapse of a primary thrombus. International Journal for Numerical Methods in Biomedical Engineering 26(3–4), 488–500 (2010). https://doi.org/10.1002/cnm.1367
Kent, N.J., et al.: Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. Biomed. Microdevices 12(6), 987–1000 (2010). https://doi.org/10.1007/s10544-010-9453-y
Kim, D.A., Ku, D.N.: Structure of shear-induced platelet aggregated clot formed in an in vitro arterial thrombosis model. Blood Adv. 6(9), 2872–2883 (2022). https://doi.org/10.1182/bloodadvances.2021006248
Liu, Z.L., Ku, D.N., Aidun, C.K.: Mechanobiology of shear-induced platelet aggregation leading to occlusive arterial thrombosis: a multiscale in silico analysis. J. Biomech. 120, 110349 (2021). https://doi.org/10.1016/j.jbiomech.2021.110349
Liu, Z.L., Bresette, C., Aidun, C.K., Ku, D.N.: SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Adv. 6(8), 2453–2465 (2022). https://doi.org/10.1182/bloodadvances.2021005692
Meagher, D.: Geometric modeling using Octree Encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982). https://doi.org/10.1016/0146-664x(82)90104-6
Mody, N.A., King, M.R.: Platelet adhesive dynamics. part II: high shear-induced transient aggregation via GPIb\(\upalpha \)-vWF-GPIb\(\upalpha \) bridging. Biophys. J. 95(5), 2556–2574 (2008). https://doi.org/10.1529/biophysj.107.128520
Möller, T., Trumbore, B.: Fast, minimum storage ray/triangle intersection. In: ACM SIGGRAPH 2005 Courses on - SIGGRAPH 2005. ACM Press (2005). https://doi.org/10.1145/1198555.1198746
Qi, Q.M., Shaqfeh, E.S.G.: Theory to predict particle migration and margination in the pressure-driven channel flow of blood. Phys. Rev. Fluids 2(9), 093102 (2017). https://doi.org/10.1103/physrevfluids.2.093102
Rhee, S.W., et al.: Venous puncture wound hemostasis results in a vaulted thrombus structured by locally nucleated platelet aggregates. Commun. Biol. 4(1), 1090 (2021). https://doi.org/10.1038/s42003-021-02615-y
van Rooij, B.J.M.: Platelet adhesion and aggregation in high shear blood flow: an insilico and in vitro study. Ph.D. thesis, Universiteit van Amsterdam (2020)
van Rooij, B.J.M., Závodszky, G., Azizi Tarksalooyeh, V.W., Hoekstra, A.G.: Identifying the start of a platelet aggregate by the shear rate and the cell-depleted layer. J. R. Soc. Interface 16(159), 20190148 (2019). https://doi.org/10.1098/rsif.2019.0148, https://royalsocietypublishing.org/doi/10.1098/rsif.2019.0148
van Rooij, B.J.M., Závodszky, G., Hoekstra, A.G., Ku, D.N.: Haemodynamic flow conditions at the initiation of high-shear platelet aggregation: a combined in vitro and cellular in silico study. Interface Focus 11(1), 20190126 (2021). https://doi.org/10.1098/rsfs.2019.0126, https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0126
Ruggeri, Z.M., Mendolicchio, G.L.: Adhesion mechanisms in platelet function. Circ. Res. 100(12), 1673–1685 (2007). https://doi.org/10.1161/01.res.0000267878.97021.ab
Ruggeri, Z.M., Orje, J.N., Habermann, R., Federici, A.B., Reininger, A.J.: Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108(6), 1903–1910 (2006). https://doi.org/10.1182/blood-2006-04-011551. https://ashpublications.org/blood/article/108/6/1903/22637/Activationindependent-platelet-adhesion-and
Sang, Y., Roest, M., de Laat, B., de Groot, P.G., Huskens, D.: Interplay between platelets and coagulation. Blood Reviews 46, 100733 (2021). https://doi.org/10.1016/j.blre.2020.100733
Savage, B., Saldívar, E., Ruggeri, Z.M.: Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2), 289–297 (1996). https://doi.org/10.1016/s0092-8674(00)80983-6
Schneider, S.W., et al.: Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. 104(19), 7899–7903 (2007). https://doi.org/10.1073/pnas.0608422104
Sing, C.E., Alexander-Katz, A.: Elongational flow induces the unfolding of von Willebrand factor at physiological flow rates. Biophys. J. 98(9), L35–L37 (2010). https://doi.org/10.1016/j.bpj.2010.01.032. https://linkinghub.elsevier.com/retrieve/pii/S0006349510001979
Smith, S.A., Travers, R.J., Morrissey, J.H.: How it all starts: initiation of the clotting cascade. Crit. Rev. Biochem. Mol. Biol. 50(4), 326–336 (2015). https://doi.org/10.3109/10409238.2015.1050550
Spieker, C.J., et al.: The effects of micro-vessel curvature induced elongational flows on platelet adhesion. Ann. Biomed. Eng. 49(12), 3609–3620 (2021). https://doi.org/10.1007/s10439-021-02870-4
Springer, T.A.: von willebrand factor, Jedi knight of the bloodstream. Blood 124(9), 1412–1425 (2014). https://doi.org/10.1182/blood-2014-05-378638
Tosenberger, A., Ataullakhanov, F., Bessonov, N., Panteleev, M., Tokarev, A., Volpert, V.: Modelling of thrombus growth in flow with a DPD-PDE method. J. Theoret. Biol. 337, 30–41 (2013). https://doi.org/10.1016/j.jtbi.2013.07.023
Tosenberger, A., Ataullakhanov, F., Bessonov, N., Panteleev, M., Tokarev, A., Volpert, V.: Modelling of platelet–fibrin clot formation in flow with a DPD–PDE method. J. Math. Biol. 72(3), 649–681 (2015). https://doi.org/10.1007/s00285-015-0891-2
Ulrichts, H., et al.: Shielding of the a1 domain by the d\(\prime \)d3 domains of von Willebrand factor modulates its interaction with platelet glycoprotein Ib-IX-V. J. Biol. Chem. 281(8), 4699–4707 (2006). https://doi.org/10.1074/jbc.m513314200
Xu, S., Xu, Z., Kim, O.V., Litvinov, R.I., Weisel, J.W., Alber, M.: Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J. R. Soc. Interface 14(136), 20170441 (2017). https://doi.org/10.1098/rsif.2017.0441
Xu, Z., Chen, N., Kamocka, M.M., Rosen, E.D., Alber, M.: A multiscale model of thrombus development. J. R. Soc. Interface 5(24), 705–722 (2007). https://doi.org/10.1098/rsif.2007.1202
Yakusheva, A.A., et al.: Traumatic vessel injuries initiating hemostasis generate high shear conditions. Blood Adv. 6(16), 4834–4846 (2022). https://doi.org/10.1182/bloodadvances.2022007550
Yazdani, A., Li, H., Humphrey, J.D., Karniadakis, G.E.: A general shear-dependent model for thrombus formation. PLoS Comput. Biol. 13(1), e1005291 (2017). https://doi.org/10.1371/journal.pcbi.1005291
Závodszky, G., van Rooij, B., Azizi, V., Hoekstra, A.: Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells. Front. Physiol. 8, 563 (2017). https://doi.org/10.3389/fphys.2017.00563
Závodszky, G., Van Rooij, B., Czaja, B., Azizi, V., De Kanter, D., Hoekstra, A.G.: Red blood cell and platelet diffusivity and margination in the presence of cross-stream gradients in blood flows. Phys. Fluids 31(3), 031903 (2019). https://doi.org/10.1063/1.5085881
Acknowledgements
C.J.S., K.A. and G.Z. acknowledge financial support by the European Union Horizon 2020 research and innovation programme under Grant Agreement No. 675451, the CompBioMed2 Project. C.J.S., K.A. and G.Z. are funded by CompBioMed2. The use of supercomputer facilities in this work was sponsored by NWO Exacte Wetenschappen (Physical Sciences).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Spieker, C.J., Asteriou, K., Zav́odszky, G. (2023). Simulating Initial Steps of Platelet Aggregate Formation in a Cellular Blood Flow Environment. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14075. Springer, Cham. https://doi.org/10.1007/978-3-031-36024-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-36024-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36023-7
Online ISBN: 978-3-031-36024-4
eBook Packages: Computer ScienceComputer Science (R0)