Skip to main content

Simulating Initial Steps of Platelet Aggregate Formation in a Cellular Blood Flow Environment

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

The mechano-chemical process of clot formation is relevant in both hemostasis and thrombosis. The initial phase of thrombus formation in arterial thrombosis can be described by the mechanical process of platelet adhesion and aggregation via hemodynamic interactions with von Willebrand factor molecules. Understanding the formation and composition of this initial blood clot is crucial to evaluate differentiating factors between hemostasis and thrombosis. In this work a cell-based platelet adhesion and aggregation model is presented to study the initial steps of aggregate formation. Its implementation upon the pre-existing cellular blood flow model HemoCell is explained in detail and the model is tested in a simple case study of initial aggregate formation under arterial flow conditions. The model is based on a simplified constraint-dependent platelet binding process that coarse-grains the most influential processes into a reduced number of probabilistic thresholds. In contrast to existing computational platelet binding models, the present method places the focus on the mechanical environment that enables the formation of the initial aggregate. Recent studies highlighted the importance of elongational flows on von Willebrand factor-mediated platelet adhesion and aggregation. The cell-resolved scale used for this model allows to account for important hemodynamic phenomena such as the formation of a red blood cell free layer and platelet margination. This work focuses on the implementation details of the model and presents its characteristic behavior at various coarse-grained threshold values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abidin, N.A.Z., et al.: A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res. Pract. Thromb. Haemost. 7, 100037 (2023). https://doi.org/10.1016/j.rpth.2023.100037

    Article  Google Scholar 

  2. Auton, M., Zhu, C., Cruz, M.A.: The mechanism of VWF-mediated platelet GPIb\(\upalpha \) binding. Biophys. J . 99(4), 1192–1201 (2010). https://doi.org/10.1016/j.bpj.2010.06.002

    Article  Google Scholar 

  3. Azizi Tarksalooyeh, V.W., Závodszky, G., van Rooij, B.J., Hoekstra, A.G.: Inflow and outflow boundary conditions for 2d suspension simulations with the immersed boundary lattice Boltzmann method. Comput. Fluids 172, 312–317 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bergmeier, W., Hynes, R.O.: Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb. Perspect. Biol. 4(2), a005132–a005132 (2011). https://doi.org/10.1101/cshperspect.a005132

    Article  Google Scholar 

  5. Byrnes, J.R., Wolberg, A.S.: Red blood cells in thrombosis. Blood 130(16), 1795–1799 (2017). https://doi.org/10.1182/blood-2017-03-745349

    Article  Google Scholar 

  6. Casa, L.D., Ku, D.N.: Thrombus formation at high shear rates. Ann. Rev. Biomed. Eng. 19(1), 415–433 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044539

    Article  Google Scholar 

  7. Chopard, B., Falcone, J.-L., Kunzli, P., Veen, L., Hoekstra, A.: Multiscale modeling: recent progress and open questions. Multiscale Multidisc. Model. Exp. Des. 1(1), 57–68 (2018). https://doi.org/10.1007/s41939-017-0006-4

    Article  Google Scholar 

  8. Czaja, B., Závodszky, G., Tarksalooyeh, V.A., Hoekstra, A.G.: Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio. J. Roy. Soc. Interface 15(146), 20180485 (2018). https://doi.org/10.1098/rsif.2018.0485

    Article  Google Scholar 

  9. Czaja, B., et al.: The effect of stiffened diabetic red blood cells on wall shear stress in a reconstructed 3d microaneurysm. Comput. Meth. Biomech. Biomed. Eng. 25(15), 1691–1709 (2022). https://doi.org/10.1080/10255842.2022.2034794

    Article  Google Scholar 

  10. Czaja, B., Gutierrez, M., Závodszky, G., de Kanter, D., Hoekstra, A., Eniola-Adefeso, O.: The influence of red blood cell deformability on hematocrit profiles and platelet margination. PLOS Comput. Biol. 16(3), e1007716 (2020). https://doi.org/10.1371/journal.pcbi.1007716. https://dx.plos.org/10.1371/journal.pcbi.1007716

  11. Filipovic, N., Kojic, M., Tsuda, A.: Modelling thrombosis using dissipative particle dynamics method. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1879), 3265–3279 (2008). https://doi.org/10.1098/rsta.2008.0097

    Article  MathSciNet  Google Scholar 

  12. Flamm, M.H., Sinno, T., Diamond, S.L.: Simulation of aggregating particles in complex flows by the lattice kinetic Monte Carlo method. J. Chem. Phys. 134(3), 034905 (2011). https://doi.org/10.1063/1.3521395

    Article  Google Scholar 

  13. Fogelson, A.L., Guy, R.D.: Immersed-boundary-type models of intravascular platelet aggregation. Comput. Meth. Appl. Mech. Eng. 197(25–28), 2087–2104 (2008). https://doi.org/10.1016/j.cma.2007.06.030

    Article  MathSciNet  Google Scholar 

  14. Fu, H., Jiang, Y., Yang, D., Scheiflinger, F., Wong, W.P., Springer, T.A.: Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat. Commun. 8(1), 324 (2017). https://doi.org/10.1038/s41467-017-00230-2

    Article  Google Scholar 

  15. Gale, A.J.: Continuing education course #2: current understanding of hemostasis. Toxicol. Pathol. 39(1), 273–280 (2010). https://doi.org/10.1177/0192623310389474

    Article  Google Scholar 

  16. de Haan, M., Zavodszky, G., Azizi, V., Hoekstra, A.: Numerical investigation of the effects of red blood cell cytoplasmic viscosity contrasts on single cell and bulk transport behaviour. Appl. Sci. 8(9), 1616 (2018). https://doi.org/10.3390/app8091616

    Article  Google Scholar 

  17. Hao, Y., Závodszky, G., Tersteeg, C., Barzegari, M., Hoekstra, A.G.: Image-based flow simulation of platelet aggregates under different shear rates (2023). https://doi.org/10.1101/2023.02.22.529480

  18. Kamada, H., Imai, Y., Nakamura, M., Ishikawa, T., Yamaguchi, T.: Computational study on thrombus formation regulated by platelet glycoprotein and blood flow shear. Microvasc. Res. 89, 95–106 (2013). https://doi.org/10.1016/j.mvr.2013.05.006

    Article  Google Scholar 

  19. Kamada, H., ichi Tsubota, K., Nakamura, M., Wada, S., Ishikawa, T., Yamaguchi, T.: A three-dimensional particle simulation of the formation and collapse of a primary thrombus. International Journal for Numerical Methods in Biomedical Engineering 26(3–4), 488–500 (2010). https://doi.org/10.1002/cnm.1367

  20. Kent, N.J., et al.: Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces. Biomed. Microdevices 12(6), 987–1000 (2010). https://doi.org/10.1007/s10544-010-9453-y

    Article  Google Scholar 

  21. Kim, D.A., Ku, D.N.: Structure of shear-induced platelet aggregated clot formed in an in vitro arterial thrombosis model. Blood Adv. 6(9), 2872–2883 (2022). https://doi.org/10.1182/bloodadvances.2021006248

    Article  Google Scholar 

  22. Liu, Z.L., Ku, D.N., Aidun, C.K.: Mechanobiology of shear-induced platelet aggregation leading to occlusive arterial thrombosis: a multiscale in silico analysis. J. Biomech. 120, 110349 (2021). https://doi.org/10.1016/j.jbiomech.2021.110349

    Article  Google Scholar 

  23. Liu, Z.L., Bresette, C., Aidun, C.K., Ku, D.N.: SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Adv. 6(8), 2453–2465 (2022). https://doi.org/10.1182/bloodadvances.2021005692

    Article  Google Scholar 

  24. Meagher, D.: Geometric modeling using Octree Encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982). https://doi.org/10.1016/0146-664x(82)90104-6

    Article  Google Scholar 

  25. Mody, N.A., King, M.R.: Platelet adhesive dynamics. part II: high shear-induced transient aggregation via GPIb\(\upalpha \)-vWF-GPIb\(\upalpha \) bridging. Biophys. J. 95(5), 2556–2574 (2008). https://doi.org/10.1529/biophysj.107.128520

  26. Möller, T., Trumbore, B.: Fast, minimum storage ray/triangle intersection. In: ACM SIGGRAPH 2005 Courses on - SIGGRAPH 2005. ACM Press (2005). https://doi.org/10.1145/1198555.1198746

  27. Qi, Q.M., Shaqfeh, E.S.G.: Theory to predict particle migration and margination in the pressure-driven channel flow of blood. Phys. Rev. Fluids 2(9), 093102 (2017). https://doi.org/10.1103/physrevfluids.2.093102

  28. Rhee, S.W., et al.: Venous puncture wound hemostasis results in a vaulted thrombus structured by locally nucleated platelet aggregates. Commun. Biol. 4(1), 1090 (2021). https://doi.org/10.1038/s42003-021-02615-y

    Article  Google Scholar 

  29. van Rooij, B.J.M.: Platelet adhesion and aggregation in high shear blood flow: an insilico and in vitro study. Ph.D. thesis, Universiteit van Amsterdam (2020)

    Google Scholar 

  30. van Rooij, B.J.M., Závodszky, G., Azizi Tarksalooyeh, V.W., Hoekstra, A.G.: Identifying the start of a platelet aggregate by the shear rate and the cell-depleted layer. J. R. Soc. Interface 16(159), 20190148 (2019). https://doi.org/10.1098/rsif.2019.0148, https://royalsocietypublishing.org/doi/10.1098/rsif.2019.0148

  31. van Rooij, B.J.M., Závodszky, G., Hoekstra, A.G., Ku, D.N.: Haemodynamic flow conditions at the initiation of high-shear platelet aggregation: a combined in vitro and cellular in silico study. Interface Focus 11(1), 20190126 (2021). https://doi.org/10.1098/rsfs.2019.0126, https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0126

  32. Ruggeri, Z.M., Mendolicchio, G.L.: Adhesion mechanisms in platelet function. Circ. Res. 100(12), 1673–1685 (2007). https://doi.org/10.1161/01.res.0000267878.97021.ab

  33. Ruggeri, Z.M., Orje, J.N., Habermann, R., Federici, A.B., Reininger, A.J.: Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108(6), 1903–1910 (2006). https://doi.org/10.1182/blood-2006-04-011551. https://ashpublications.org/blood/article/108/6/1903/22637/Activationindependent-platelet-adhesion-and

  34. Sang, Y., Roest, M., de Laat, B., de Groot, P.G., Huskens, D.: Interplay between platelets and coagulation. Blood Reviews 46, 100733 (2021). https://doi.org/10.1016/j.blre.2020.100733

  35. Savage, B., Saldívar, E., Ruggeri, Z.M.: Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2), 289–297 (1996). https://doi.org/10.1016/s0092-8674(00)80983-6

  36. Schneider, S.W., et al.: Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. 104(19), 7899–7903 (2007). https://doi.org/10.1073/pnas.0608422104

    Article  Google Scholar 

  37. Sing, C.E., Alexander-Katz, A.: Elongational flow induces the unfolding of von Willebrand factor at physiological flow rates. Biophys. J. 98(9), L35–L37 (2010). https://doi.org/10.1016/j.bpj.2010.01.032. https://linkinghub.elsevier.com/retrieve/pii/S0006349510001979

  38. Smith, S.A., Travers, R.J., Morrissey, J.H.: How it all starts: initiation of the clotting cascade. Crit. Rev. Biochem. Mol. Biol. 50(4), 326–336 (2015). https://doi.org/10.3109/10409238.2015.1050550

    Article  Google Scholar 

  39. Spieker, C.J., et al.: The effects of micro-vessel curvature induced elongational flows on platelet adhesion. Ann. Biomed. Eng. 49(12), 3609–3620 (2021). https://doi.org/10.1007/s10439-021-02870-4

    Article  Google Scholar 

  40. Springer, T.A.: von willebrand factor, Jedi knight of the bloodstream. Blood 124(9), 1412–1425 (2014). https://doi.org/10.1182/blood-2014-05-378638

    Article  Google Scholar 

  41. Tosenberger, A., Ataullakhanov, F., Bessonov, N., Panteleev, M., Tokarev, A., Volpert, V.: Modelling of thrombus growth in flow with a DPD-PDE method. J. Theoret. Biol. 337, 30–41 (2013). https://doi.org/10.1016/j.jtbi.2013.07.023

    Article  MathSciNet  Google Scholar 

  42. Tosenberger, A., Ataullakhanov, F., Bessonov, N., Panteleev, M., Tokarev, A., Volpert, V.: Modelling of platelet–fibrin clot formation in flow with a DPD–PDE method. J. Math. Biol. 72(3), 649–681 (2015). https://doi.org/10.1007/s00285-015-0891-2

    Article  MathSciNet  Google Scholar 

  43. Ulrichts, H., et al.: Shielding of the a1 domain by the d\(\prime \)d3 domains of von Willebrand factor modulates its interaction with platelet glycoprotein Ib-IX-V. J. Biol. Chem. 281(8), 4699–4707 (2006). https://doi.org/10.1074/jbc.m513314200

  44. Xu, S., Xu, Z., Kim, O.V., Litvinov, R.I., Weisel, J.W., Alber, M.: Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J. R. Soc. Interface 14(136), 20170441 (2017). https://doi.org/10.1098/rsif.2017.0441

    Article  Google Scholar 

  45. Xu, Z., Chen, N., Kamocka, M.M., Rosen, E.D., Alber, M.: A multiscale model of thrombus development. J. R. Soc. Interface 5(24), 705–722 (2007). https://doi.org/10.1098/rsif.2007.1202

    Article  Google Scholar 

  46. Yakusheva, A.A., et al.: Traumatic vessel injuries initiating hemostasis generate high shear conditions. Blood Adv. 6(16), 4834–4846 (2022). https://doi.org/10.1182/bloodadvances.2022007550

    Article  Google Scholar 

  47. Yazdani, A., Li, H., Humphrey, J.D., Karniadakis, G.E.: A general shear-dependent model for thrombus formation. PLoS Comput. Biol. 13(1), e1005291 (2017). https://doi.org/10.1371/journal.pcbi.1005291

    Article  Google Scholar 

  48. Závodszky, G., van Rooij, B., Azizi, V., Hoekstra, A.: Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells. Front. Physiol. 8, 563 (2017). https://doi.org/10.3389/fphys.2017.00563

    Article  Google Scholar 

  49. Závodszky, G., Van Rooij, B., Czaja, B., Azizi, V., De Kanter, D., Hoekstra, A.G.: Red blood cell and platelet diffusivity and margination in the presence of cross-stream gradients in blood flows. Phys. Fluids 31(3), 031903 (2019). https://doi.org/10.1063/1.5085881

    Article  Google Scholar 

Download references

Acknowledgements

C.J.S., K.A. and G.Z. acknowledge financial support by the European Union Horizon 2020 research and innovation programme under Grant Agreement No. 675451, the CompBioMed2 Project. C.J.S., K.A. and G.Z. are funded by CompBioMed2. The use of supercomputer facilities in this work was sponsored by NWO Exacte Wetenschappen (Physical Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian J. Spieker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spieker, C.J., Asteriou, K., Zav́odszky, G. (2023). Simulating Initial Steps of Platelet Aggregate Formation in a Cellular Blood Flow Environment. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14075. Springer, Cham. https://doi.org/10.1007/978-3-031-36024-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36024-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36023-7

  • Online ISBN: 978-3-031-36024-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics