Abstract
In the field of Evolutionary Strategy, parameter estimation for functions with multiple minima is a difficult task when interdependencies between parameters have to be investigated. Most of the current routines that are used to estimate such parameters leverage state-of-the-art machine learning approaches to identify the global minimum, ignoring the relevance of the potential local minima. In this paper, we present a novel Evolutionary Strategy routine that uses sampling tools deriving from the Bayesian field to find the best parameters according to a certain loss function. The Bayesian Recursive Global Optimizer (BaRGO) presented in this work explores the parameter space identifying both local and global minima. Applications of BaRGO to 2D minimization problems and to parameter estimation of Red Blood Cell model are reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Balogh, P., Gounley, J., Roychowdhury, S., Randles, A.: A data-driven approach to modeling cancer cell mechanics during microcirculatory transport. Sci. Rep. 11(1), 15232 (2021)
Benhamou, E., Saltiel, D., Vérel, S., Teytaud, F.: BCMA-ES: a Bayesian approach to CMA-ES. CoRR abs/1904.01401 (2019)
Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977). http://www.jstor.org/stable/2984875
Economides, A., et al.: Hierarchical Bayesian uncertainty quantification for a model of the red blood cell. Phys. Rev. Appl. 15, 034062 (2021)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., USA (1989)
Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint arXiv:1604.00772 (2016)
Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)
Hoff, P.: A First Course in Bayesian Statistical Methods. Springer Texts in Statistics, Springer, New York (2009). https://doi.org/10.1007/978-0-387-92407-6
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)
Sigüenza, J., Mendez, S., Nicoud, F.: How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics? Biomech. Model. Mechanobiol. 16(5), 1645–1657 (2017). https://doi.org/10.1007/s10237-017-0910-x
LAMMPS: Lammps (2015). http://lammps.sandia.gov/bench.html
Lim, C., Zhou, E., Quek, S.: Mechanical models for living cells - a review. J. Biomech. 39(2), 195–216 (2006)
Mills, J.P., Qie, L., Dao, M., Lim, C.T., Suresh, S.: Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1(3), 169–80 (2004)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pivkin, I.V., Karniadakis, G.E.: Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101(11), 118105 (2008)
Acknowledgements
The authors acknowledge support from the Swiss National Science Foundation grants 200021L_204817 and 192549. Simulations were carried out at the Swiss National Supercomputer Center under project u4.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Miotti, P., Filippi-Mazzola, E., Wit, E.C., Pivkin, I.V. (2023). Estimating Parameters of 3D Cell Model Using a Bayesian Recursive Global Optimizer (BaRGO). In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14075. Springer, Cham. https://doi.org/10.1007/978-3-031-36024-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-36024-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36023-7
Online ISBN: 978-3-031-36024-4
eBook Packages: Computer ScienceComputer Science (R0)