Skip to main content

Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Design of modern antenna systems heavily relies on numerical optimization methods. Their primary purpose is performance improvement by tuning of geometry and material parameters of the antenna under study. For reliability, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expenditures. The problem is aggravated in the case of global optimization, typically carried out using nature-inspired algorithms. To reduce the CPU cost, population-based routines are often combined with surrogate modeling techniques, frequently in the form of machine learning procedures. While offering certain advantages, their efficiency is worsened by the curse of dimensionality and antenna response nonlinearity. In this article, we investigate computational advantages of combining population-based optimization with variable-resolution EM models. Consequently, a model management scheme is developed, which adjusts the discretization level of the antenna under optimization within the continuous spectrum of acceptable fidelities. Starting from the lowest practically useful fidelity, the resolution converges to the highest assumed level when the search process is close to conclusion. Several adjustment profiles are considered to investigate the speedup-reliability trade-offs. Numerical results have been obtained for two microstrip antennas and particle swarm optimizer as a widely-used nature-inspired algorithm. Consistent acceleration of up to eighty percent has been obtained in comparison to the single-resolution version with minor deterioration of the design quality. Another attractive feature of our methodology is versatility and easy implementation and handling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y., Zhang, J., Peng, F., Wu, S.: A glasses frame antenna for the applications in internet of things. IEEE Internet Things J. 6(5), 8911–8918 (2019)

    Article  Google Scholar 

  2. Le, T.T., Yun, T.-Y.: Miniaturization of a dual-band wearable antenna for WBAN applications. IEEE Ant. Wirel. Propag. Lett. 19(8), 1452–1456 (2020)

    Article  Google Scholar 

  3. Yuan, X.-T., Chen, Z., Gu, T., Yuan, T.: A wideband PIFA-pair-based MIMO antenna for 5G smartphones. IEEE Ant. Wirel. Propag. Lett. 20(3), 371–375 (2021)

    Article  Google Scholar 

  4. Xu, L., Xu, J., Chu, Z., Liu, S., Zhu, X.: Circularly polarized implantable antenna with improved impedance matching. IEEE Ant. Wirel. Propag. Lett. 19(5), 876–880 (2020)

    Article  Google Scholar 

  5. Ameen, M., Thummaluru, S.R., Chaudhary, R.K.: A compact multilayer triple-band circularly polarized antenna using anisotropic polarization converter. IEEE Ant. Wirel. Propag. Lett. 20(2), 145–149 (2021)

    Article  Google Scholar 

  6. Wong, K., Chang, H., Chen, J., Wang, K.: Three wideband monopolar patch antennas in a Y-shape structure for 5G multi-input–multi-output access points. IEEE Ant. Wirel. Propag. Lett. 19(3), 393–397 (2020)

    Article  Google Scholar 

  7. Shirazi, M., Li, T., Huang, J., Gong, X.: A reconfigurable dual-polarization slot-ring antenna element with wide bandwidth for array applications. IEEE Trans. Ant. Prop. 66(11), 5943–5954 (2018)

    Article  Google Scholar 

  8. Karmokar, D.K., Esselle, K.P., Bird, T.S.: Wideband microstrip leaky-wave antennas with two symmetrical side beams for simultaneous dual-beam scanning. IEEE Trans. Ant. Prop. 64(4), 1262–1269 (2016)

    Article  MathSciNet  Google Scholar 

  9. Sambandam, P., Kanagasabai, M., Natarajan, R., Alsath, M.G.N., Palaniswamy, S.: Miniaturized button-like WBAN antenna for off-body communication. IEEE Trans. Ant. Prop. 68(7), 5228–5235 (2020)

    Article  Google Scholar 

  10. Kovaleva, M., Bulger, D., Esselle, K.P.: Comparative study of optimization algorithms on the design of broadband antennas. IEEE J. Multiscale Multiphys. Comp. Techn. 5, 89–98 (2020)

    Article  Google Scholar 

  11. Genovesi, S., Mittra, R., Monorchio, A., Manara, G.: Particle swarm optimization for the design of frequency selective surfaces. IEEE Ant. Wirel. Propag. Lett. 5, 277–279 (2006)

    Article  Google Scholar 

  12. Liang, S., Fang, Z., Sun, G., Liu, Y., Qu, G., Zhang, Y.: Sidelobe reductions of antenna arrays via an improved chicken swarm optimization approach. IEEE Access 8, 37664–37683 (2020)

    Article  Google Scholar 

  13. Kim, S., Nam, S.: Compact ultrawideband antenna on folded ground plane. IEEE Trans. Ant. Prop. 68(10), 7179–7183 (2020)

    Article  Google Scholar 

  14. Li, W., Zhang, Y., Shi, X.: Advanced fruit fly optimization algorithm and its application to irregular subarray phased array antenna synthesis. IEEE Access 7, 165583–165596 (2019)

    Article  Google Scholar 

  15. Jia, X., Lu, G.: A hybrid Taguchi binary particle swarm optimization for antenna designs. IEEE Ant. Wirel. Propag. Lett. 18(8), 1581–1585 (2019)

    Article  Google Scholar 

  16. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

    Book  Google Scholar 

  17. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft. Comput. 22(2), 387–408 (2017). https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  18. Jiang, Z.J., Zhao, S., Chen, Y., Cui, T.J.: Beamforming optimization for time-modulated circular-aperture grid array with DE algorithm. IEEE Ant. Wirel. Propag. Lett. 17(12), 2434–2438 (2018)

    Article  Google Scholar 

  19. Baumgartner, P., et al.: Multi-objective optimization of Yagi-Uda antenna applying enhanced firefly algorithm with adaptive cost function. IEEE Trans. Magn. 54(3), 1–4 (2018). Article no. 8000504

    Google Scholar 

  20. Yang, S.H., Kiang, J.F.: Optimization of sparse linear arrays using harmony search algorithms. IEEE Trans. Ant. Prop. 63(11), 4732–4738 (2015)

    Article  MathSciNet  Google Scholar 

  21. Li, X., Luk, K.M.: The grey wolf optimizer and its applications in electromagnetics. IEEE Trans. Ant. Prop. 68(3), 2186–2197 (2020)

    Article  Google Scholar 

  22. Darvish, A., Ebrahimzadeh, A.: Improved fruit-fly optimization algorithm and its applications in antenna arrays synthesis. IEEE Trans. Antennas Propag. 66(4), 1756–1766 (2018)

    Article  Google Scholar 

  23. Bora, T.C., Lebensztajn, L., Coelho, L.D.S.: Non-dominated sorting genetic algorithm based on reinforcement learning to optimization of broad-band reflector antennas satellite. IEEE Trans. Magn. 48(2), 767–770 (2012)

    Article  Google Scholar 

  24. Cui, C., Jiao, Y., Zhang, L.: Synthesis of some low sidelobe linear arrays using hybrid differential eution algorithm integrated with convex programming. IEEE Ant. Wirel. Propag. Lett. 16, 2444–2448 (2017)

    Article  Google Scholar 

  25. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005)

    Article  Google Scholar 

  26. Easum, J.A., Nagar, J., Werner, P.L., Werner, D.H.: Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models. IEEE Trans. Ant. Prop. 66(12), 6706–6715 (2018)

    Article  Google Scholar 

  27. Liu, B., Aliakbarian, H., Ma, Z., Vandenbosch, G.A.E., Gielen, G., Excell, P.: An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. Ant. Propag. 62(1), 7–18 (2014)

    Article  Google Scholar 

  28. Alzahed, A.M., Mikki, S.M., Antar, Y.M.M.: Nonlinear mutual coupling compensation operator design using a novel electromagnetic machine learning paradigm. IEEE Ant. Wirel. Prop. Lett. 18(5), 861–865 (2019)

    Article  Google Scholar 

  29. Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L.: Surrogate-based infill optimization applied to electromagnetic problems. Int. J. RF Microw. Computt. Aided Eng. 20(5), 492–501 (2010)

    Google Scholar 

  30. Koziel, S., Pietrenko-Dabrowska, A.: Performance-based nested surrogate modeling of antenna input characteristics. IEEE Trans. Ant. Prop. 67(5), 2904–2912 (2019)

    Article  Google Scholar 

  31. Koziel, S., Pietrenko-Dabrowska, A.: Performance-driven surrogate modeling of high-frequency structures. Springer, New York (2020). https://doi.org/10.1007/978-3-030-38926-0

  32. Pietrenko-Dabrowska, A., Koziel, S.: Antenna modeling using variable-fidelity EM simulations and constrained co-kriging. IEEE Access 8(1), 91048–91056 (2020)

    Article  Google Scholar 

  33. Koziel, S., Pietrenko-Dabrowska, A.: Expedited feature-based quasi-global optimization of multi-band antennas with Jacobian variability tracking. IEEE Access 8, 83907–83915 (2020)

    Article  Google Scholar 

  34. Koziel, S.: Fast simulation-driven antenna design using response-feature surrogates. Int. J. RF Micr. CAE 25(5), 394–402 (2015)

    Article  Google Scholar 

  35. Koziel, S., Bandler, J.W.: Reliable microwave modeling by means of variable-fidelity response features. IEEE Trans. Microwave Theor. Tech. 63(12), 4247–4254 (2015)

    Article  Google Scholar 

  36. Rayas-Sanchez, J.E.: Power in simplicity with ASM: tracing the aggressive space mapping algorithm over two decades of development and engineering applications. IEEE Microwave Mag. 17(4), 64–76 (2016)

    Article  Google Scholar 

  37. Koziel, S., Unnsteinsson, S.D.: Expedited design closure of antennas by means of trust-region-based adaptive response scaling. IEEE Antennas Wirel. Prop. Lett. 17(6), 1099–1103 (2018)

    Article  Google Scholar 

  38. Li, H., Huang, Z., Liu, X., Zeng, C., Zou, P.: Multi-fidelity meta-optimization for nature inspired optimization algorithms. Appl. Soft. Comp. 96, 106619 (2020)

    Article  Google Scholar 

  39. Tomasson, J.A., Pietrenko-Dabrowska, A., Koziel, S.: Expedited globalized antenna optimization by principal components and variable-fidelity EM simulations application to microstrip antenna design. Electronics 9(4), 673 (2020)

    Article  Google Scholar 

  40. Koziel, S., Ogurtsov, S.: Model management for cost-efficient surrogate-based optimization of antennas using variable-fidelity electromagnetic simulations. IET Microwaves Ant. Prop. 6(15), 1643–1650 (2012)

    Article  Google Scholar 

  41. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  42. Consul, P.: Triple band gap coupled microstrip U-slotted patch antenna using L-slot DGS for wireless applications. In: Communication, Control and Intelligent Systems (CCIS), Mathura, India, pp. 31–34 (2015)

    Google Scholar 

  43. Haq, M.A., Koziel, S.: Simulation-based optimization for rigorous assessment of ground plane modifications in compact UWB antenna design. Int. J. RF Microwave CAE 28(4), e21204 (2018)

    Article  Google Scholar 

  44. SMA PCB connector, 32K101-400L5, Rosenberger Hochfrequenztechnik GmbH & C. KG (2021)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dassault Systemes, France, for making CST Microwave Studio available. This work is partially supported by the Icelandic Centre for Research (RANNIS) Grant 206606 and by Gdańsk University of Technology Grant DEC-41/2020/IDUB/I.3.3 under the Argentum Triggering Research Grants program - ‘Excellence Initiative - Research University’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pietrenko-Dabrowska, A., Koziel, S., Leifsson, L. (2023). Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10475. Springer, Cham. https://doi.org/10.1007/978-3-031-36024-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36024-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36023-7

  • Online ISBN: 978-3-031-36024-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics