Skip to main content

Hierarchical Learning to Solve PDEs Using Physics-Informed Neural Networks

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

The neural network-based approach to solving partial differential equations has attracted considerable attention. In training a neural network, the network learns global features corresponding to low-frequency components while high-frequency components are approximated at a much slower rate. For a class of equations in which the solution contains a wide range of scales, the network training process can suffer from slow convergence and low accuracy due to its inability to capture the high-frequency components. In this work, we propose a sequential training based on a hierarchy of networks to improve the convergence rate and accuracy of the neural network solution to partial differential equations. The proposed method comprises multi-training levels in which a newly introduced neural network is guided to learn the residual of the previous level approximation. We validate the efficiency and robustness of the proposed hierarchical approach through a suite of partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)

    Google Scholar 

  2. Briggs, W.L., Henson, V.E., McCormick, S.F.: A multigrid tutorial. SIAM (2000)

    Google Scholar 

  3. Cai, W., Xu, Z.Q.J.: Multi-scale deep neural networks for solving high dimensional pdes. arXiv preprint arXiv:1910.11710 (2019)

  4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  6. Lee, Y., Engquist, B.: Multiscale numerical methods for advection-diffusion in incompressible turbulent flow fields. J. Comput. Phys. 317, 33–46 (2016)

    Article  MathSciNet  Google Scholar 

  7. Liu, Z., Cai, W., Xu, Z.Q.J.: Multi-scale deep neural network (mscalednn) for solving poisson-boltzmann equation in complex domains. arXiv preprint arXiv:2007.11207 (2020)

  8. van der Meer, R., Oosterlee, C.W., Borovykh, A.: Optimally weighted loss functions for solving pdes with neural networks. J. Comput. Appl. Math. 405, 113887 (2022)

    Article  MathSciNet  Google Scholar 

  9. Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019)

    Google Scholar 

  10. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  11. Sirignano, J., Spiliopoulos, K.: Dgm: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    Article  MathSciNet  Google Scholar 

  12. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)

    Google Scholar 

  13. Wang, B., Zhang, W., Cai, W.: Multi-scale deep neural network (mscalednn) methods for oscillatory stokes flows in complex domains. arXiv preprint arXiv:2009.12729 (2020)

  14. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J. Sci. Comput. 43(5), A3055–A3081 (2021)

    Article  MathSciNet  Google Scholar 

  15. Wang, S., Wang, H., Perdikaris, P.: On the eigenvector bias of fourier feature networks: From regression to solving multi-scale pdes with physics-informed neural networks. Comput. Methods Appl. Mech. Engrg. 384, 113938 (2021)

    Article  MathSciNet  Google Scholar 

  16. Wang, S., Yu, X., Perdikaris, P.: When and why pinns fail to train: A neural tangent kernel perspective. J. Comput. Phys. 449, 110768 (2022)

    Article  MathSciNet  Google Scholar 

  17. Xu, Z.Q.J., Zhang, Y., Luo, T., Xiao, Y., Ma, Z.: Frequency principle: Fourier analysis sheds light on deep neural networks. Commun. Comput, Phys (2019)

    Google Scholar 

  18. Xu, Z.-Q.J., Zhang, Y., Xiao, Y.: Training behavior of deep neural network in frequency domain. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11953, pp. 264–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36708-4_22

    Chapter  Google Scholar 

Download references

Acknowledgements

YL is supported in part by NSF DMS-1912999 and ONR MURI N00014-20-1-2595.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihun Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, J., Lee, Y. (2023). Hierarchical Learning to Solve PDEs Using Physics-Informed Neural Networks. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14075. Springer, Cham. https://doi.org/10.1007/978-3-031-36024-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36024-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36023-7

  • Online ISBN: 978-3-031-36024-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics