Skip to main content

An Analysis of Political Parties Cohesion Based on Congressional Speeches

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Speeching is an intrinsic part of the work of parliamentarians, as they expose facts as well as their points of view and opinions on several subjects. This article details the analysis of relations between members of the lower house of the National Congress of Brazil during the term of office between 2011 and 2015 according to transcriptions of their house speeches. In order to accomplish this goal, Natural Language Processing and Machine Learning were used to assess pairwise relationships between members of the congress which were then observed from the perspective of Complex Networks. Node clustering was used to evaluate multiple speech-based measures of distance between each pair of political peers, as well as the resulting cohesion of their political parties. Experimental results showed that one of the proposed measures, based on aggregating similarities between each pair of speeches, is superior to a previously established alternative of considering concatenations of these elements relative to each individual when targeting to group parliamentarians organically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dados abertos da câmara dos deputados. https://dadosabertos.camara.leg.br/swagger/api.html. (Accessed 17 Aug 2021)

  2. Aires, V., da Silva, A., Nakamura, F., Nakamura, E.: An evaluation of structural characteristics of networks to identify media bias in news portals. In: Proceedings of the Brazilian Symposium on Multimedia and the Web, pp. 225–232 (2020)

    Google Scholar 

  3. Aref, S., Neal, Z.P.: Identifying hidden coalitions in the US house of representatives by optimally partitioning signed networks based on generalized balance. Sci. Rep. 11(1), 19939 (2021)

    Article  Google Scholar 

  4. Barabási, A.L., Pósfai, M.: Network science. Cambridge University Press, Cambridge, United Kingdom (2016), oCLC: ocn910772793

    Google Scholar 

  5. Beel, J., Gipp, B., Langer, S., Breitinger, C.: Research-paper recommender systems: a literature survey. Int. J. Digit. Libr. 17(4), 305–338 (2016)

    Article  Google Scholar 

  6. Brito, A.C.M., Silva, F.N., Amancio, D.R.: A complex network approach to political analysis: application to the brazilian chamber of deputies. PLoS ONE 15(3), e0229928 (2020)

    Article  Google Scholar 

  7. Bursztyn, V.S., Nunes, M.G., Figueiredo, D.R.: How brazilian congressmen connect: homophily and cohesion in voting and donation networks. J. Complex Netw. 8(1), cnaa006 (2020)

    Google Scholar 

  8. Caetano, J.A., Lima, H.S., Santos, M.F., Marques-Neto, H.T.: Using sentiment analysis to define twitter political users’ classes and their homophily during the 2016 american presidential election. J. Internet Serv. Appl. 9(1), 1–15 (2018)

    Article  Google Scholar 

  9. Camacho-Collados, J., Pilehvar, M.T.: On the role of text preprocessing in neural network architectures: An evaluation study on text categorization and sentiment analysis. arXiv preprint arXiv:1707.01780 (2017)

  10. Cossu, J.V., Labatut, V., Dugué, N.: A review of features for the discrimination of twitter users: application to the prediction of offline influence. Soc. Netw. Anal. Min. 6(1), 25 (2016)

    Article  Google Scholar 

  11. Cristiani, A., Lieira, D., Camargo, H.: A sentiment analysis of brazilian elections tweets. In: Anais do VIII Symposium on Knowledge Discovery, Mining and Learning, pp. 153–160. SBC (2020)

    Google Scholar 

  12. Dallmann, A., Lemmerich, F., Zoller, D., Hotho, A.: Media bias in german online newspapers. In: Proceedings of the 26th ACM Conference on Hypertext & Social Media, pp. 133–137 (2015)

    Google Scholar 

  13. Dias, M., Braz, P., Bezerra, E., Goldschmidt, R.: Contextual information based community detection in attributed heterogeneous networks. IEEE Lat. Am. Trans. 17(02), 236–244 (2019)

    Article  Google Scholar 

  14. Doan, T.M., Gulla, J.A.: A survey on political viewpoints identification. Online Social Netw. Media 30, 100208 (2022)

    Article  Google Scholar 

  15. Elejalde, E., Ferres, L., Herder, E.: The nature of real and perceived bias in chilean media. In: Proceedings of the 28th ACM Conference on Hypertext and Social Media, pp. 95–104 (2017)

    Google Scholar 

  16. Fernandes, M.S.: Tenho dito: uma aplicação para análise de discursos parlamentares utilizando técnicas de processamento de linguagem natural (2017)

    Google Scholar 

  17. Gomes Ferreira, C.H., Murai Ferreira, F., de Souza Matos, B., Marques de Almeida, J.: Modeling Dynamic Ideological Behavior in Political Networks (2019)

    Google Scholar 

  18. Greene, D., Cross, J.P.: Exploring the political agenda of the european parliament using a dynamic topic modeling approach. Polit. Anal. 25(1), 77–94 (2017)

    Article  Google Scholar 

  19. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  20. Lee, S.H., Magallanes, J.M., Porter, M.A.: Time-dependent community structure in legislation cosponsorship networks in the congress of the republic of peru. J. Complex Netw. 5(1), 127–144 (2016)

    MathSciNet  Google Scholar 

  21. Loper, E., Bird, S.: Nltk: The natural language toolkit. CoRR cs.CL/0205028 (2002)

    Google Scholar 

  22. Lovins, J.B.: Development of a stemming algorithm. Mech. Transl. Comput. Linguist. 11(1–2), 22–31 (1968)

    Google Scholar 

  23. Méndez, J.R., Iglesias, E.L., Fdez-Riverola, F., Díaz, F., Corchado, J.M.: Tokenising, stemming and stopword removal on anti-spam filtering domain. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 449–458. Springer, Heidelberg (2006). https://doi.org/10.1007/11881216_47

    Chapter  Google Scholar 

  24. Metz, J., Calvo, R., Seno, E.R., Romero, R.A.F., Liang, Z., et al.: Redes complexas: conceitos e aplicações. (2007)

    Google Scholar 

  25. Pastor-Galindo, J., Zago, M., Nespoli, P., Bernal, S.L., Celdrán, A.H., Pérez, M.G., Ruipérez-Valiente, J.A., Pérez, G.M., Mármol, F.G.: Spotting political social bots in twitter: a use case of the 2019 spanish general election. IEEE Trans. Netw. Serv. Manage. 17(4), 2156–2170 (2020)

    Article  Google Scholar 

  26. Pedregosa, F.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  27. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference On Empirical Methods In Natural Language Processing And Computational Natural Language Learning (EMNLP-CoNLL), pp. 410–420 (2007)

    Google Scholar 

  28. Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., Kertesz, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)

    Article  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. Nature 393(6684), 440–442 (1998)

    Google Scholar 

  30. Wives, L.K.: Um estudo sobre agrupamento de documentos textuais em processamento de informações não estruturadas usando técnicas de" clustering" (1999)

    Google Scholar 

  31. Yim, O., Ramdeen, K.T.: Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data. Quant. Methods Psychol. 11(1), 8–21 (2015)

    Article  Google Scholar 

  32. Zhang, X., Wang, H., Yu, J., Chen, C., Wang, X., Zhang, W.: Polarity-based graph neural network for sign prediction in signed bipartite graphs. World Wide Web 25(2), 471–487 (2022)

    Article  Google Scholar 

  33. Zhitomirsky-Geffet, M., David, E., Koppel, M., Uzan, H.: Utilizing overtly political texts for fully automatic evaluation of political leaning of online news websites. Online Information Review (2016)

    Google Scholar 

Download references

Acknowledgements

Douglas O. Cardoso acknowledges the financial support by the Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia, FCT) through grant UIDB/05567/2020, and by the European Social Fund and programs Centro 2020 and Portugal 2020 through project CENTRO-04-3559-FSE-000158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas O. Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, W.P.C., Marques, L.C., Assis, L.S., Cardoso, D.O. (2023). An Analysis of Political Parties Cohesion Based on Congressional Speeches. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14075. Springer, Cham. https://doi.org/10.1007/978-3-031-36024-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36024-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36023-7

  • Online ISBN: 978-3-031-36024-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics