Skip to main content

Artificial Immune Systems Approach for Surface Reconstruction of Shapes with Large Smooth Bumps

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 10476))

Included in the following conference series:

  • 472 Accesses

Abstract

Reverse engineering is one of the classical approaches for quailty assessment in industrial manufacturing. A key technology in reverse engineering is surface reconstruction, which aims at obtaining a digital model of a physical object from a cloud of 3D data points obtained by scanning the object. In this paper we address the surface reconstruction problem for surfaces that can exhibit large smooth bumps. To account for this type of features, our approach is based on using exponentials of polynomial functions in two variables as the approximating functions. In particular, we consider three different models, given by bivariate distributions obtained by combining a normal univariate distribution with a normal, Gamma, and Weibull distribution, respectively. The resulting surfaces depend on some parameters whose values have to be optimized. This yields a difficult nonlinear continuous optimization problem solved through an artificial immune systems approach based on the clonal selection theory. The performance of the method is discussed through its application to a benchmark comprised of three examples of point clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, B., Castillo, E., Sarabia, J.M.: Conditionally Specified Distributions. Lecture Notes in Statistics, vol. 73. Springer, Berlin (1992). https://doi.org/10.1007/978-1-4612-2912-4

    Book  MATH  Google Scholar 

  2. Barhak, J., Fischer, A.: Parameterization and reconstruction from 3D scattered points based on neural network and PDE techniques. IEEE Trans. Vis. Comput. Graph. 7(1), 1–16 (2001)

    Article  MATH  Google Scholar 

  3. Barnhill, R.E.: Geometric Processing for Design and Manufacturing. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  4. Castillo, E., Iglesias, A.: Some characterizations of families of surfaces using functional equations. ACM Trans. Graph. 16(3), 296–318 (1997)

    Article  Google Scholar 

  5. Castillo, E., Iglesias, A., Ruiz, R.: Functional Equations in Applied Sciences. Mathematics in Science and Engineering, vol. 199, Elsevier Science, Amsterdam (2004)

    Google Scholar 

  6. Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer, Berlin (1999). https://doi.org/10.1007/978-3-642-59901-9

    Book  MATH  Google Scholar 

  7. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)

    MATH  Google Scholar 

  8. De Castro, L.N., Von Zuben, F.J.: Artificial immune systems: part I - basic theory and applications. Technical report-RT DCA 01/99 (1999)

    Google Scholar 

  9. De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

    Article  Google Scholar 

  10. Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  11. Farin, G.: Curves and Surfaces for CAGD, 5th edn. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  12. Gálvez, A., Iglesias, A.: Efficient particle swarm optimization approach for data fitting with free knot B-splines. Comput. Aided Des. 43(12), 1683–1692 (2011)

    Article  Google Scholar 

  13. Gálvez, A., Iglesias, A.: Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points. Inf. Sci. 192(1), 174–192 (2012)

    Article  Google Scholar 

  14. Gálvez A., Iglesias A.: Firefly algorithm for polynomial Bézier surface parameterization. J. Appl. Math. 2013, Article ID 237984 (2012)

    Google Scholar 

  15. Gálvez, A., Iglesias, A.: A new iterative mutually-coupled hybrid GA-PSO approach for curve fitting in manufacturing. Appl. Soft Comput. 13(3), 1491–1504 (2013)

    Article  Google Scholar 

  16. Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and surface fitting of 3D point clouds through genetic algorithms, functional networks and least-squares approximation. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4706, pp. 680–693. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74477-1_62

    Chapter  Google Scholar 

  17. Gálvez, A., Iglesias, A., Puig-Pey, J.: Iterative two-step genetic-algorithm method for efficient polynomial B-spline surface reconstruction. Inf. Sci. 182(1), 56–76 (2012)

    Article  MathSciNet  Google Scholar 

  18. Gu, P., Yan, X.: Neural network approach to the reconstruction of free-form surfaces for reverse engineering. Comput. Aided Des. 27(1), 59–64 (1995)

    Article  Google Scholar 

  19. Hoffmann, M.: Numerical control of Kohonen neural network for scattered data approximation. Numer. Algorithms 39, 175–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iglesias, A., Echevarría, G., Gálvez, A.: Functional networks for B-spline surface reconstruction. Futur. Gener. Comput. Syst. 20(8), 1337–1353 (2004)

    Article  MATH  Google Scholar 

  21. Iglesias, A., Gálvez, A.: Hybrid functional-neural approach for surface reconstruction. Math. Probl. Eng. (2014) Article ID 351648, 13 pages

    Google Scholar 

  22. Iglesias, A., Gálvez, A., Avila, A.: Hybridizing mesh adaptive search algorithm and artificial immune systems for discrete rational Bézier curve approximation. Vis. Comput. 32, 393–402 (2016)

    Article  Google Scholar 

  23. Iglesias, A., Gálvez, A., Avila, A.: Immunological approach for full NURBS reconstruction of outline curves from noisy data points in medical imaging. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(6), 929–1942 (2018)

    Article  Google Scholar 

  24. Iglesias, A., et al.: Cuckoo search algorithm with Lévy flights for global-support parametric surface approximation in reverse engineering. Symmetry 10(3), PaperID 58 (2018)

    Google Scholar 

  25. Jing, L., Sun, L.: Fitting B-spline curves by least squares support vector machines. In: Proceedings of the 2nd International Conference on Neural Networks & Brain, Beijing, China, pp. 905–909. IEEE Press (2005)

    Google Scholar 

  26. Jupp, D.L.B.: Approximation to data by splines with free knots. SIAM J. Numer. Anal. 15, 328–343 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Knopf, G.K., Kofman, J.: Adaptive reconstruction of free-form surfaces using Bernstein basis function networks. Eng. Appl. Artif. Intell. 14(5), 577–588 (2001)

    Article  Google Scholar 

  28. Ma, W.Y., Kruth, J.P.: Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces. Comput. Aided Des. 27(9), 663–675 (1995)

    Article  MATH  Google Scholar 

  29. Park, H.: An error-bounded approximate method for representing planar curves in B-splines. Comput. Aided Geomet. Design 21, 479–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Park, H., Lee, J.H.: B-spline curve fitting based on adaptive curve refinement using dominant points. Comput. Aided Des. 39, 439–451 (2007)

    Article  Google Scholar 

  31. Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-04074-0

    Book  MATH  Google Scholar 

  32. Pottmann, H., Leopoldseder, S., Hofer, M., Steiner, T., Wang, W.: Industrial geometry: recent advances and applications in CAD. Comput. Aided Des. 37, 751–766 (2005)

    Article  Google Scholar 

  33. Powell, M.J.D.: Curve fitting by splines in one variable. In: Hayes, J.G. (ed.) Numerical Approximation to Functions and Data. Athlone Press, London (1970)

    Google Scholar 

  34. Rice, J.R.: The Approximation of Functions, vol. 2. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  35. Sarfraz, M., Raza, S.A.: Capturing outline of fonts using genetic algorithms and splines. In: Proceedings of Fifth International Conference on Information Visualization, IV 2001, pp. 738–743. IEEE Computer Society Press (2001)

    Google Scholar 

  36. Varady, T., Martin, R.: Reverse engineering. In: Farin, G., Hoschek, J., Kim, M. (eds.) Handbook of Computer Aided Geometric Design. Elsevier Science (2002)

    Google Scholar 

  37. Wang, W.P., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans. Graph. 25(2), 214–238 (2006)

    Article  Google Scholar 

  38. Yoshimoto, F., Moriyama, M., Harada, T.: Automatic knot adjustment by a genetic algorithm for data fitting with a spline. In: Proceedings of Shape Modeling International 1999, pp. 162–169. IEEE Computer Society Press (1999)

    Google Scholar 

  39. Yoshimoto, F., Harada, T., Yoshimoto, Y.: Data fitting with a spline using a real-coded algorithm. Comput. Aided Des. 35, 751–760 (2003)

    Article  Google Scholar 

  40. Zhao, X., Zhang, C., Yang, B., Li, P.: Adaptive knot adjustment using a GMM-based continuous optimization algorithm in B-spline curve approximation. Comput. Aided Des. 43, 598–604 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

Akemi Gálvez, Lihua You and Andrés Iglesias thank the financial support from the project PDE-GIR of the European Union’s Horizon 2020 research and innovation programme, in the Marie Sklodowska-Curie Actions programme, with grant agreement of reference number 778035, and also from the Agencia Estatal de Investigación (AEI) of the Spanish Ministry of Science and Innovation (Computer Science National Program), for the grant of reference number PID2021-127073OB-I00 of the MCIN/AEI/10.13039/501100011033/FEDER, EU. Iztok Fister Jr. thanks the Slovenian Research Agency for the financial support under Research Core Funding No. P2-0057. Iztok Fister thanks the Slovenian Research Agency for the financial support under Research Core Funding No. P2-0042 - Digital twin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Iglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gálvez, A., Fister, I., You, L., Fister, I., Iglesias, A. (2023). Artificial Immune Systems Approach for Surface Reconstruction of Shapes with Large Smooth Bumps. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics