Skip to main content

Spatially-Varying Meshless Approximation Method for Enhanced Computational Efficiency

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

In this paper, we address a way to reduce the total computational cost of meshless approximation by reducing the required stencil size through spatially varying computational node regularity. Rather than covering the entire domain with scattered nodes, only regions with geometric details are covered with scattered nodes, while the rest of the domain is discretized with regular nodes. A simpler approximation using solely monomial basis can be used in regions covered by regular nodes, effectively reducing the required stencil size and computational cost compared to the approximation on scattered nodes where a set of polyharmonic splines is added to ensure convergent behaviour.

The performance of the proposed hybrid scattered-regular approximation approach, in terms of computational efficiency and accuracy of the numerical solution, is studied on natural convection driven fluid flow problems. We start with the solution of the de Vahl Davis benchmark case, defined on a square domain, and continue with two- and three-dimensional irregularly shaped domains. We show that the spatial variation of the two approximation methods can significantly reduce the computational demands, with only a minor impact on the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 2D, the 5 basis functions are \(\{1, x, y, x^2, y^2\}\). The xy term is not required for regularly placed nodes and its omission allows us to use the smaller and completely symmetric 5-node stencil.

  2. 2.

    \(N_{\mathrm {RBF-FD}} \sim 3 N_{\textrm{MON}}\) due to the larger stencil size and the extra PHS in the approximation basis.

  3. 3.

    Source code is available at http://gitlab.com/e62Lab/public/2023_cp_iccs_hybrid_nodes under tag v1.1.

References

  1. Bayona, V., Flyer, N., Fornberg, B., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourantas, G., et al.: Strong-form approach to elasticity: hybrid finite difference-meshless collocation method (FDMCM). Appl. Math. Model. 57, 316–338 (2018). https://doi.org/10.1016/j.apm.2017.09.028

    Article  MathSciNet  MATH  Google Scholar 

  3. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wan, D.C., Patnaik, B.S.V., Wei, G.W.: A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numer. Heat Transfer Part B: Fundam. 40(3), 199–228 (2001). https://doi.org/10.1080/104077901752379620

  5. Ding, H., Shu, C., Yeo, K., Xu, D.: Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method. Comput. Methods Appl. Mech. Eng. 193(9–11), 727–744 (2004)

    Article  MATH  Google Scholar 

  6. El Kadmiri, R., Belaasilia, Y., Timesli, A., Kadiri, M.S.: A hybrid algorithm using the fem-meshless method to solve nonlinear structural problems. Eng. Anal. Boundary Elem. 140, 531–543 (2022). https://doi.org/10.1016/j.enganabound.2022.04.018

    Article  MathSciNet  MATH  Google Scholar 

  7. Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Computat. Phys. 321, 21–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences. SIAM (2015)

    Google Scholar 

  9. Javed, A., Djidjeli, K., Xing, J., Cox, S.: A hybrid mesh free local RBF-cartesian FD scheme for incompressible flow around solid bodies. Int. J. Math. Comput. Nat. Phys. Eng. 7, 957–966 (2013)

    Google Scholar 

  10. Kosec, G.: A local numerical solution of a fluid-flow problem on an irregular domain. Adv. Eng. Softw. 120, 36–44 (2018)

    Article  Google Scholar 

  11. Kosec, G., Šarler, B.: Solution of thermo-fluid problems by collocation with local pressure correction. Int. J. Numer. Methods Heat Fluid Flow 18, 868–882 (2008)

    Article  Google Scholar 

  12. Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press (2009)

    Google Scholar 

  13. Sadat, H., Couturier, S.: Performance and accuracy of a meshless method for laminar natural convection. Numer. Heat Transfer Part B: Fundam. 37(4), 455–467 (2000). https://doi.org/10.1080/10407790050051146

    Article  Google Scholar 

  14. van der Sande, K., Fornberg, B.: Fast variable density 3-D node generation. SIAM J. Sci. Comput. 43(1), A242–A257 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shankar, V., Kirby, R.M., Fogelson, A.L.: Robust node generation for meshfree discretizations on irregular domains and surfaces. SIAM J. Sci. Comput. 40(4), 2584–2608 (2018). https://doi.org/10.1137/17m114090x

    Article  MathSciNet  MATH  Google Scholar 

  16. Slak, J., Kosec, G.: Refined meshless local strong form solution of Cauchy-Navier equation on an irregular domain. Eng. Anal. Boundary Elem. 100, 3–13 (2019). https://doi.org/10.1016/j.enganabound.2018.01.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Slak, J., Kosec, G.: Adaptive radial basis function-generated finite differences method for contact problems. Int. J. Numer. Meth. Eng. 119(7), 661–686 (2019). https://doi.org/10.1002/nme.6067

    Article  MathSciNet  MATH  Google Scholar 

  18. Slak, J., Kosec, G.: On generation of node distributions for meshless PDE discretizations. SIAM J. Sci. Comput. 41(5), A3202–A3229 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Slak, J., Kosec, G.: Medusa: a C++ library for solving PDEs using strong form mesh-free methods. ACM Trans. Math. Softw. (TOMS) 47(3), 1–25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tolstykh, A., Shirobokov, D.: On using radial basis functions in a “finite difference mode’’ with applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tritton, D.J.: Physical Fluid Dynamics. Oxford Science Publ, Clarendon Press (1988). https://doi.org/10.1007/978-94-009-9992-3

  22. de Vahl Davis, G.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Meth. Fluids 3(3), 249–264 (1983)

    Article  MATH  Google Scholar 

  23. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press (2004)

    Google Scholar 

  24. Zamolo, R., Nobile, E.: Solution of incompressible fluid flow problems with heat transfer by means of an efficient RBF-FD meshless approach. Numer. Heat Transf. Part B: Fundam. 75(1), 19–42 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Slovenian Research Agency (ARRS) in the framework of the research core funding No. P2-0095, the Young Researcher program PR-10468 and research project J2-3048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitja Jančič .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. All the co-authors have confirmed to know the submission of the manuscript by the corresponding author.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jančič, M., Rot, M., Kosec, G. (2023). Spatially-Varying Meshless Approximation Method for Enhanced Computational Efficiency. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics