Skip to main content

Convolutional Recurrent Autoencoder for Molecular-Continuum Coupling

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Molecular-continuum coupled flow simulations are used in many applications to build a bridge across spatial or temporal scales. Hence, they allow to investigate effects beyond flow scenarios modeled by any single-scale method alone, such as a discrete particle system or a partial differential equation solver. On the particle side of the coupling, often molecular dynamics (MD) is used to obtain trajectories based on pairwise molecule interaction potentials. However, since MD is computationally expensive and macroscopic flow quantities sampled from MD systems often highly fluctuate due to thermal noise, the applicability of molecular-continuum methods is limited. If machine learning (ML) methods can learn and predict MD based flow data, then this can be used as a noise filter or even to replace MD computations, both of which can generate tremendous speed-up of molecular-continuum simulations, enabling emerging applications on the horizon.

In this paper, we develop an advanced hybrid ML model for MD data in the context of coupled molecular-continuum flow simulations: A convolutional autoencoder deals with the spatial extent of the flow data, while a recurrent neural network is used to capture its temporal correlation. We use the open source coupling tool MaMiCo to generate MD datasets for ML training and implement the hybrid model as a PyTorch-based filtering module for MaMiCo. It is trained with real MD data from different flow scenarios including a Couette flow validation setup and a three-dimensional vortex street. Our results show that the hybrid model is able to learn and predict smooth flow quantities, even for very noisy MD input data. We furthermore demonstrate that also the more complex vortex street flow data can accurately be reproduced by the ML module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/HSU-HPC/MaMiCo_hybrid_ml.

  2. 2.

    https://pytorch.org/docs/stable/index.html.

References

  1. Bauer, M., Köstler, H., Rüde, U.: lbmpy: automatic code generation for efficient parallel lattice Boltzmann methods. J. Comput. Sci. 49, 101269 (2021)

    Article  MathSciNet  Google Scholar 

  2. Borg, M.K., Lockerby, D.A., Ritos, K., Reese, J.M.: Multiscale simulation of water flow through laboratory-scale nanotube membranes. J. Membrane Sci. 567, 115–126 (2018). ISSN 0376-7388

    Google Scholar 

  3. Bungartz, H.J., et al.: preCICE - a fully parallel library for multi-physics surface coupling. Comput. I & Fluids 141, 250–258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fukami, K., Hasegawa, K., Nakamura, T., Morimoto, M., Fukagata, K.: Model order reduction with neural networks: application to laminar and turbulent flows. SN Comput. Sci. 2, 1–16 (2021)

    Article  Google Scholar 

  5. Grinberg, L.: Proper orthogonal decomposition of atomistic flow simulations. J. Comput. Phys. 231(16), 5542–5556 (2012)

    Article  Google Scholar 

  6. Jarmatz, P., Maurer, F., Wittenberg, H., Neumann, P.: MaMiCo: non-local means and pod filtering with flexible data-flow for two-way coupled molecular-continuum HPC flow simulation. J. Comput. Sci. 61, 101617 (2022)

    Article  Google Scholar 

  7. Jarmatz, P., Neumann, P.: MaMiCo: parallel noise reduction for multi-instance molecular-continuum flow simulation. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11539, pp. 451–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22747-0_34

    Chapter  Google Scholar 

  8. Jarmatz, P., et al.: MaMiCo 2.0: an enhanced open-source framework for high-performance molecular-continuum flow simulation. SoftwareX 20, 101251 (2022). ISSN 2352-7110

    Google Scholar 

  9. Kadupitiya, J., Sun, F., Fox, G., Jadhao, V.: Machine learning surrogates for molecular dynamics simulations of soft materials. J. Comput. Sci. 42, 101107 (2020)

    Article  Google Scholar 

  10. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  11. Nakamura, T., Fukagata, K.: Robust training approach of neural networks for fluid flow state estimations. Int. J. Heat Fluid Flow 96, 108997 (2022)

    Article  Google Scholar 

  12. Nakamura, T., Fukami, K., Hasegawa, K., Nabae, Y., Fukagata, K.: Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow. Phys. Fluids 33(2), 025116 (2021). https://doi.org/10.1063/5.0039845

    Article  Google Scholar 

  13. Neumann, P., Bian, X.: MaMiCo: transient multi-instance molecular-continuum flow simulation on supercomputers. Comput. Phys. Commun. 220, 390–402 (2017)

    Article  Google Scholar 

  14. Niethammer, C., et al.: ls1 mardyn: the massively parallel molecular dynamics code for large systems. J. Chem. Theory Comput. 10(10), 4455–4464 (2014)

    Article  Google Scholar 

  15. Ren, X.G., Wang, Q., Xu, L.Y., Yang, W.J., Xu, X.H.: HACPar: an efficient parallel multiscale framework for hybrid atomistic-continuum simulation at the micro-and nanoscale. Adv. Mech. Eng. 9(8) (2017)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II. NNFM, pp. 547–566. Springer, Cham (1996). https://doi.org/10.1007/978-3-322-89849-4_39

    Chapter  Google Scholar 

  18. Smith, E.: On the coupling of molecular dynamics to continuum computational fluid dynamics. Sch. Mech. Eng. (2013)

    Google Scholar 

  19. Tang, Y.H., Kudo, S., Bian, X., Li, Z., Karniadakis, G.E.: Multiscale universal interface: a concurrent framework for coupling heterogeneous solvers. J. Comput. Phys. 297, 13–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomas, M., Corry, B.: A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374(2060), 20150020 (2016)

    Article  Google Scholar 

  21. Veen, L.E., Hoekstra, A.G.: Easing multiscale model design and coupling with MUSCLE 3. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 425–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_33

    Chapter  Google Scholar 

  22. Wiewel, S., Becher, M., Thuerey, N.: Latent space physics: towards learning the temporal evolution of fluid flow. In: Computer Graphics Forum, vol. 38, pp. 71–82. Wiley Online Library (2019)

    Google Scholar 

  23. Wittenberg, H., Neumann, P.: Transient two-way molecular-continuum coupling with OpenFOAM and MaMiCo: a sensitivity study. Computation 9(12) (2021). https://doi.org/10.3390/computation9120128. ISSN 2079-3197

  24. Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative study of CNN and RNN for natural language processing. arXiv:1702.01923 (2017)

  25. Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Dive into deep learning. arXiv preprint arXiv:2106.11342 (2021)

Download references

Acknowledgments

We thank the projects “hpc.bw” and “MaST” of dtec.bw – Digitalization and Technology Research Center of the Bundeswehr for providing computational resources, as the HPC cluster “HSUper” has been used to train and validate the ML models presented in this paper. We also want to thank Prof. Zhen Li and the MuthComp Group of Clemson University for fruitful discussions and exchange of ideas as well as provision of office space and IT systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Jarmatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jarmatz, P., Lerdo, S., Neumann, P. (2023). Convolutional Recurrent Autoencoder for Molecular-Continuum Coupling. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics