Skip to main content

TAQOS: A Benchmark Protocol for Quantum Optimization Systems

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

The growing availability of quantum computers raises questions about their ability to solve concrete problems. Existing benchmark protocols still lack problem diversity and attempt to summarize quantum advantage in a single metric that measures the quality of found solutions. Unfortunately, the solution quality metric is insufficient for measuring quantum algorithm performance and should be presented along with time and instances coverage metrics. This paper aims to establish the TAQOS protocol to perform a Tight Analysis of Quantum Optimization Systems. The combination of metrics considered by this protocol helps to identify problems and instances liable to produce quantum advantage on Noisy-Intermediate Scale Quantum (NISQ) devices for useful applications. The methodology used for the benchmark process is detailed and an illustrative short case study on the Max-Cut problem is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D-wave systems, d-wave ocean sdk, release 6.0.1 (2022). https://github.com/dwavesystems/dwave-ocean-sdk

  2. Albash, T., Lidar, D.A.: Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8(3), 031016 (2018)

    Google Scholar 

  3. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing and reporting on computational experiments with heuristic methods. J. Heuristics 1(1), 9–32 (1995)

    Article  MATH  Google Scholar 

  4. Basso, J., et al.: The quantum approximate optimization algorithm at high depth for maxcut on large-girth regular graphs and the sherrington-kirkpatrick model. arXiv preprint arXiv:2110.14206 (2021)

  5. Blume-Kohout, R., Young, K.C.: A volumetric framework for quantum computer benchmarks. Quantum 4, 362 (2020)

    Article  Google Scholar 

  6. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019)

    Article  Google Scholar 

  7. Dunning, I., Gupta, S., Silberholz, J.: What works best when? a systematic evaluation of heuristics for max-cut and QUBO. INFORMS J. Comput. 30(3) (2018)

    Google Scholar 

  8. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  9. Fellous Asiani, M., et al.: Optimizing resource efficiencies for scalable full-stack quantum computers. arXiv preprint arXiv:2209.05469 (2022)

  10. Gilbert, V.: Taqos (2023). https://github.com/CEA-LIST/Quantum-Benchmark-CEA-LIST/tree/main/TAQOS

  11. Harrigan, M.P., et al.: Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys. 17(3), 332–336 (2021)

    Article  Google Scholar 

  12. Hen, I., Job, J., Albash, T., Rønnow, T.F., et al.: Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015)

    Article  Google Scholar 

  13. Knill, E., et al.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)

    Article  Google Scholar 

  14. Li, A., Stein, S., Krishnamoorthy, S., Ang, J.: Qasmbench: A low-level qasm benchmark suite for nisq evaluation and simulation. arXiv preprint arXiv:2005.13018 (2020)

  15. Lilja, D.J.: Measuring computer performance: a practitioner’s guide. Cambridge University Press (2005)

    Google Scholar 

  16. Lubinski, T., Coffrin, C., McGeoch, C., Sathe, et al.: Optimization applications as quantum performance benchmarks. arXiv preprint arXiv:2302.02278 (2023)

  17. Magesan, E., Gambetta, J.M., Emerson, J.: Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011)

    Article  Google Scholar 

  18. Martiel, S., Ayral, T., Allouche, C.: Benchmarking quantum coprocessors in an application-centric, hardware-agnostic, and scalable way. IEEE Trans. Quantum Eng. 2, 1–11 (2021)

    Article  Google Scholar 

  19. Oshiyama, H., Ohzeki, M.: Benchmark of quantum-inspired heuristic solvers for quadratic unconstrained binary optimization. Scient. Reports 12(1) (2022)

    Google Scholar 

  20. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  21. Rice, J.R.: The algorithm selection problem. In: Advances in Computers, pp. 65–118. Elsevier (1976)

    Google Scholar 

  22. Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures of algorithm performance across instance space. Comput. Oper. Res. 45, 12–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xue, C., Chen, Z.Y., Wu, Y.C., Guo, G.P.: Effects of quantum noise on quantum approximate optimization algorithm. Chin. Phys. Lett. 38(3), 030302 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilbert, V., Louise, S., Sirdey, R. (2023). TAQOS: A Benchmark Protocol for Quantum Optimization Systems. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics