Skip to main content

Numerical Simulation of Propeller Hydrodynamics Using the Open Source Software

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

The paper presents the results of numerical simulation of the propeller Ka4-70 using the actuator line model in the OpenFOAM, AMReX and Nek5000 open-source software. The modifications of the tools for wind farm simulation for these packages are carried out. Features of these implementation are described. For numerical calculations the LES and IDDES turbulence models are used. A comparison of the computational costs and accuracy of flow structures are made for the actuator line model using different methods and the arbitrary mesh interface approach. The actuator line model provides force characteristics and flow structures with good enough accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachler, G., Schiffermüller, H., Bregant, A.: A parallel fully implicit sliding mesh method for industrial CFD applications. In: Jenssen, C.B., et al. (eds.) Parallel Computational Fluid Dynamics 2000, pp. 501–508. North-Holland, Amsterdam (2001). https://doi.org/10.1016/B978-044450673-3/50129-9

  2. Paulo, A.S.F.S., Tsoutsanis, P., Antoniadis, A.F.: Simple multiple reference frame for high-order solution of hovering rotors with and without ground effect. Aerosp. Sci. Technol. 111, 106518 (2021). https://doi.org/10.1016/j.ast.2021.106518

  3. Rai, M.M.: A conservative treatment of zonal boundaries for Euler equation calculations. J. Comput. Phys. 62(2), 472–503 (1986). https://doi.org/10.1016/0021-9991(86)90141-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Steijl, R., Barakos, G.: Sliding mesh algorithm for CFD analysis of helicopter rotor- fuselage aerodynamics. Int. J. Num. Methods Fluids 58(5), 527–549 (2008). https://doi.org/10.1002/fld.1757

    Article  MATH  Google Scholar 

  5. McNaughton, J., Afgan, I., Apsley, D.D., Rolfo, S., Stallard, T., Stansby, P.K.: A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine. Int. J. Num. Methods Fluids 74(4), 250–269 (2014). https://doi.org/10.1002/fld.3849

    Article  MathSciNet  MATH  Google Scholar 

  6. Ramírez, L., Foulquié, C., Nogueira, X., Khelladi, S., Chassaing, J.-C., Colominas, I.: New high-resolution-preserving sliding mesh techniques for higherorder finite volume schemes. Comput. Fluids 118, 114–130 (2015). https://doi.org/10.1016/j.compfluid.2015.06.008

    Article  MathSciNet  MATH  Google Scholar 

  7. Jasak, H., Jemcov, A., Tukovic, Z.: OpenFOAM: A c++ library for complex physics simulations (2013)

    Google Scholar 

  8. Chandar, D., Gopalan, H.: Comparative analysis of the arbitrary mesh interface( AMI) and overset methods for dynamic body motions in OpenFOAM. (2016). https://doi.org/10.2514/6.2016-3324

  9. Vilfayeau, S., Pesci, C., Ferraris, S., Heather, A., Roesler, F.: Improvement of arbitrary mesh interface (AMI) algorithm for external aerodynamic simulation with rotating wheels. Fourth international conference in numerical and experimental aerodynamics of, road vehicles and trains (Aerovehicles 4), Berlin, Germany, August 23–25 (2021)

    Google Scholar 

  10. Nuernberg, M., Tao, L.: Three dimensional tidal turbine array simulations using OpenFOAM with dynamic mesh. Ocean Eng. 147, 629–646 (2018). https://doi.org/10.1016/j.oceaneng.2017.10.053

    Article  Google Scholar 

  11. Daaou Nedjari, H., Guerri, O., Saighi, M.: Full rotor modelling and generalized actuator disc for wind turbine wake investigation. Energy Rep. 6, 232–255 (2020). https://doi.org/10.1016/j.egyr.2019.10.041. Technologies and Materials for Renewable Energy, Environment and Sustainability

  12. Baltazar, J.M., Rijpkema, D., Falcão de Campos, J., Bosschers, J.: Prediction of the open-water performance of ducted propellers with a panel method. J. Marine Sci. Eng. 6(1) (2018). https://doi.org/10.3390/jmse6010027

  13. Vermeer, L.J., Sørensen, J.N., Crespo, A.: Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 39(6), 467–510 (2003). https://doi.org/10.1016/S0376-0421(03)00078-2

    Article  Google Scholar 

  14. Amer, E., Dobrev, I., Massouh, F.: Determination of wind turbine far wake using actuator disk (2014)

    Google Scholar 

  15. Sørensen, J.N., Myken, A.: Unsteady actuator disc model for horizontal axis wind turbines. J. Wind Eng. Indust. Aerodyn. 39(1), 139–149 (1992). https://doi.org/10.1016/0167-6105(92)90540-Q

    Article  Google Scholar 

  16. Martínez Tossas, L., Leonardi, S., Churchfield, M., Moriarty, P.: A comparison of actuator disk and actuator line wind turbine models and best practices for their use (2012). https://doi.org/10.2514/6.2012-900

  17. Ammara, I., Leclerc, C., Masson, C.: A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms. J. Solar Energy Eng. Trans. ASME - J. Sol. Energy Eng. 124 (2002). https://doi.org/10.1115/1.1510870

  18. Sorensen, J., Shen, W.Z.: Numerical modeling of wind turbine wakes. J. Fluids Eng. 124, 393 (2002). https://doi.org/10.1115/1.1471361

    Article  Google Scholar 

  19. Troldborg, N., Sørensen, J., Mikkelsen, R.: Numerical simulations of wake characteristics of a wind turbine in uniform flow. Wind Energy 13, 86–99 (2010). https://doi.org/10.1002/we.345

    Article  Google Scholar 

  20. Lynch, C.E., Prosser, D.T., Smith, M.J.: An efficient actuating blade model for unsteady rotating system wake simulations. Comput. Fluids 92, 138–150 (2014). https://doi.org/10.1016/j.compfluid.2013.12.014

    Article  Google Scholar 

  21. Dobrev, I., Massouh, F., Rapin, M.: Actuator surface hybrid model. J. Phys. Conf. Ser. 75(1), 012019 (2007). https://doi.org/10.1088/1742-6596/75/1/012019

    Article  Google Scholar 

  22. Shen, W.Z., Zhang, J.: The actuator surface model: A new navier-stokes based model for rotor computations. J. Solar Energy Eng. Trans. ASME - J. Sol. Energy Eng. 131 (2009). https://doi.org/10.1115/1.3027502

  23. Yang, X., Sotiropoulos, F.: A new class of actuator surface models for wind turbines (2018)

    Google Scholar 

  24. Bachant, P., Goude, A., Wosnik, M.: Actuator line modeling of vertical-axis turbines. arXiv preprint arXiv:1605.01449 (2016)

  25. Troldborg, N.: Actuator line modeling of wind turbine wakes (2009)

    Google Scholar 

  26. turbinesFoam library. https://github.com/turbinesFoam/turbinesFoam. Accessed 17 Apr 2023

  27. Gritskevich, M.S., Garbaruk, A., Schütze, J., Menter, F.R.: Development of DDES and IDDES formulations for the k-! shear stress transport model. Flow Turbul. Combust. 88, 431–449 (2012)

    Article  MATH  Google Scholar 

  28. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. AIAA 439 (1992). https://doi.org/10.2514/6.1992-439

  29. Epikhin, A.S.: Numerical schemes and hybrid approach for the simulation of unsteady turbulent flows. Mathemat. Model. Comput. Simulat. 11(6), 1019–1031 (2019). https://doi.org/10.1134/S2070048219060024

    Article  MathSciNet  MATH  Google Scholar 

  30. AMR-Wind Solver. https://github.com/Exawind/amr-wind. Accessed 14 Apr 2023

  31. Zhang, W., et al.: Amrex: A framework for blockstructured adaptive mesh refinement. J. Open Source Softw. 4, 1370 (2019). https://doi.org/10.21105/joss.01370

  32. AMReX Software. https://github.com/AMReX-Codes/amrex. Accessed 01 Apr 2023

  33. Nek5000 Software. https://github.com/Nek5000. Accessed 31 Jan 2023

  34. Kuiper, G.: The Wageningen Propeller Series. MARIN Publication. Maritime Research Institute, Netherlands (1992)

    Google Scholar 

  35. Wang, M., QingXu, Zhang, Q., Epikhin, A., Liang, B.: Comparative analysis of non/ductedpropeller under the influence of vertical wall. In: 2022 Ivannikov Ispras Open Conference (ISPRAS), pp. 124–129 (2022). https://doi.org/10.1109/ISPRAS57371.2022.10076863

  36. Airfoiltools. http://airfoiltools.com/. Accessed 04 Mar 2023

  37. Viterna, L., Janetzke, D.: Theoretical and experimental power from large horizontal-axis wind turbines. NASA Technical Memorandum (1982)

    Google Scholar 

  38. Petrov, A.G., Sukhov, A.D., Sibgatullin, I.N., Britov, A.D.: Analytical and numerical methods for Zhukovsky airfoils aerodynamics coefficients. In: 2022 Ivannikov Ispras Open Conference (ISPRAS), pp. 62–64 (2022). https://doi.org/10.1109/ISPRAS57371.2022.10076854

Download references

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research (RFBR, Proj. No. 21-57-53019) and National Natural Science Foundation of China (NSFC, Proj. No. 52111530047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Britov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Britov, A., Yarikova, S., Epikhin, A., Elistratov, S., Zhang, Q. (2023). Numerical Simulation of Propeller Hydrodynamics Using the Open Source Software. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics