Skip to main content

Numerical Simulation of Supersonic Jet Noise Using Open Source Software

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

The paper is devoted to the study of various numerical algorithms for calculating the flow and acoustics characteristics of supersonic jets implemented in open source software. The ideally expanded supersonic jet with parameters \(M = 2.1\), \(Re = 70000\) is considered. A comparison of various approaches implemented in the OpenFOAM and block-structured adaptive mesh refinement framework of AMReX is conducted. Numerical algorithms for compressible gas flow implemented in pimpleCentralFoam, QGDFoam and CNS solvers are considered. Acoustic noise are calculated using the Ffowcs Williams and Hawkings analogy implemented in the libAcoustics library. Cross-validation comparison of the flow fields and acoustic characteristics is carried out.

Supported by Moscow Center of Fundamental and Applied Mathematics, Agreement with the Ministry of Science and Higher Education of the Russian Federation, No. \(075-15-2022-283\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginevsky, A.S.: Theory of turbulent jets and traces: Integral methods of calculation. Engineering (1969)

    Google Scholar 

  2. Stromberg, J.L., McLaughlin, D.K., Troutt, T.R.: Flow field and acoustic properties of a Mach number 0.9 jet at a low Reynolds number. J. Sound Vibr. 72(2), 159–176 (1980)

    Article  Google Scholar 

  3. Troutt, T.R., McLaughlin, D.K.: Experiments on the flow and acoustic properties of a moderate-Reynolds-number supersonic jet. J. Fluid Mech. 116, 123–156 (1982)

    Article  Google Scholar 

  4. Biswas, S., Qiao, L.: A numerical investigation of ignition of ultra-lean premixed H/air mixtures by pre-chamber supersonic hot jet. SAE Int. J. Eng. 10(5), 2231–2247 (2017)

    Article  Google Scholar 

  5. Li, X.R., et al.: Acoustic feedback loops for screech tones of underexpanded free round jets at different modes. J. Fluid Mechan. 902, A17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Galerkin, B.G.: On electrical circuits for the approximate solution of the Laplace equation. Vestnik Inzh. 19, 897–908 (1915). (In Russian)

    Google Scholar 

  7. Epikhin, A., Kraposhin, M., Vatutin, K.: The numerical simulation of compressible jet at low Reynolds number using OpenFOAM. E3S Web Conf. 128 (2019)

    Google Scholar 

  8. Kraposhin, M.V., Banholzer, M., Pfitzner, M., Marchevsky, I.K.: A hybrid pressure-based solver for non ideal single-phase fluid flows at all speeds. Int. J Numer. Methods Fluids 88(2), 79–99 (2018)

    Article  Google Scholar 

  9. Elizarova, T.G.: Quasi-gas Dynamic Equations, Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-00292-2

  10. AMReX Guided Tutorials. https://amrex-codes.github.io/amrex/tutorials. Accessed 3 Feb 2023

  11. AMReX CNS Flow Solver. https://github.com/AMReX-Codes/amrex/tree/development/Tests/EB/CNS. Accessed 3 Feb 2023

  12. Baars, W.J., Tinney, C.E., Murray, N.E., Jansen, B.J., Panickar, P.: The effect of heat on turbulent mixing noise in supersonic jets. In: AIAA Paper, pp. 2011–1029 (2011)

    Google Scholar 

  13. Tam, C.K.W., Viswanathan, K., Ahuja, K.K., Panda, J.: The sources of jet noise: Experimental evidence. J. Fluid Mech. 615, 253–292 (2008)

    Article  MATH  Google Scholar 

  14. Tam, C.K.W., Shen, H., Raman, G.: Screech tones of supersonic jets from bevelled rectangular nozzles. AIAA J. 35(7), 1119–1125 (1997)

    Article  Google Scholar 

  15. Tam, C.K.W., Burton, D.E.: Sound generated by instability waves of supersonic flows. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273–295 (1984)

    Google Scholar 

  16. Tam, C.K.W.: Mach wave radiation from high-speed jets. AIAA J. 47(10), 2440–2448 (1984)

    Article  Google Scholar 

  17. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Natarajan, M., et al.: A moving embedded boundary approach for the compressible Navier-Stokes equations in a block-structured adaptive refinement framework. J. Comput. Phys. (2022)

    Google Scholar 

  19. Brentner, K.S., Farassat, F.: An analytical comparison of the acoustic analogy and Kirchhoff formulations formoving surfaces. AIAA J. 36, 1379–1386 (1998)

    Google Scholar 

  20. Brès G., A., Pérot, F., Freed, D.: A Ffowcs Williams-Hawkings solver for lattice Boltzmann based computational aeroacoustics. In: AIAA Paper, pp. 2010–3711 (2010)

    Google Scholar 

  21. hybridCentralSolvers. https://github.com/unicfdlab/hybridCentralSolvers. Accessed 3 Feb 2023

  22. QGDSolvers. https://github.com/unicfdlab/QGDsolver. Accessed 3 Feb 2023

  23. Kraposhin, M.V., Smirnova, E.V., Elizarova, T.G., Istomina, M.A.: Development of a new OpenFOAM solver using regularized gas dynamic equations. Comput. Fluids 166, 163–175 (2018)

    Google Scholar 

  24. LibAcoustics Library. https://github.com/unicfdlab/libAcoustics. Accessed 3 Feb 2023

  25. Epikhin, A., Evdokimov, I., Kraposhin, M., Kalugin, M., Strijhak, S.: Development of a dynamic library for computational aeroacoustics applications using the OpenFOAM open source package. Procedia Comput. Sci. 66, 150–157 (2015)

    Article  Google Scholar 

  26. Epikhin, A., Kraposhin, M.: Prediction of the free jet noise using quasi-gas dynamic equations and acoustic analogy. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12143, pp. 217–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50436-6_16

  27. Melnikova, V.G., Epikhin, A.S.. Kraposhin, M.V.: The Eulerian-Lagrangian approach for the numerical investigation of an acoustic field generated by a high-speed gas-droplet flow. Fluids (2021)

    Google Scholar 

  28. Uzun, A., Lyrintzis, A.S., Blaisdell, G.A.: Coupling of integral acoustics methods with LES for jet noise prediction. In: AIAA Paper, pp. 4982–5001 (2004)

    Google Scholar 

  29. Shur, M., Spalart, P., Strelets, M.: Noise prediction for increasingly complex jets. Part I: Methods and tests. Int. J. Aeroacoust. 4, 213–246 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Moscow Center of Fundamental and Applied Mathematics, Agreement with the Ministry of Science and Higher Education of the Russian Federation, grant number \(075-15-2022-283\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan But .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Epikhin, A., But, I. (2023). Numerical Simulation of Supersonic Jet Noise Using Open Source Software. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics