Skip to main content

Solving (Max) 3-SAT via Quadratic Unconstrained Binary Optimization

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

We introduce a novel approach to translate arbitrary 3-sat instances to Quadratic Unconstrained Binary Optimization (qubo) as they are used by quantum annealing (QA) or the quantum approximate optimization algorithm (QAOA). Our approach requires fewer couplings and fewer physical qubits than the current state-of-the-art, which results in higher solution quality. We verified the practical applicability of the approach by testing it on a D-Wave quantum annealer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  Google Scholar 

  2. Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving SAT and MaxSAT with a quantum annealer: foundations and a preliminary report. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 153–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_9

    Chapter  Google Scholar 

  3. Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Next-generation topology of D-Wave quantum processors. arXiv preprint arXiv:2003.00133 (2020)

  4. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014)

  5. Chancellor, N., Zohren, S., Warburton, P.A., Benjamin, S.C., Roberts, S.: A direct mapping of max k-sat and high order parity checks to a chimera graph. Sci. Rep. 6(1), 1–9 (2016)

    Article  Google Scholar 

  6. Choi, V.: Adiabatic quantum algorithms for the NP-complete maximum-weight independent set, exact cover and 3SAT problems. arXiv preprint arXiv:1004.2226 (2010)

  7. Cook, S.: The P versus NP problem. In: The Millennium Prize Problems, pp. 87–104 (2006)

    Google Scholar 

  8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing. ACM (1971)

    Google Scholar 

  9. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  10. Feld, S., et al.: A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. arXiv preprint arXiv:1811.07403 (2018)

  11. Fortnow, L.: The status of the P versus NP problem. Commun. ACM 52(9), 78–86 (2009)

    Article  Google Scholar 

  12. Gabor, T., et al.: Assessing solution quality of 3SAT on a quantum annealing platform. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 23–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_3

    Chapter  Google Scholar 

  13. Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and using QUBO models. arXiv preprint arXiv:1811.11538 (2018)

  14. Hen, I., Spedalieri, F.M.: Quantum annealing for constrained optimization. Phys. Rev. Appl. 5(3), 034007 (2016)

    Article  Google Scholar 

  15. Hogg, T.: Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67(2), 022314 (2003)

    Article  MathSciNet  Google Scholar 

  16. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  Google Scholar 

  17. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)

    Article  Google Scholar 

  18. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  19. McGeoch, C.C., Wang, C.: Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In: Proceedings of the ACM International Conference on Computing Frontiers, pp. 1–11 (2013)

    Google Scholar 

  20. Mooney, G.J., Tonetto, S.U., Hill, C.D., Hollenberg, L.C.: Mapping NP-hard problems to restricted adiabatic quantum architectures. arXiv preprint arXiv:1911.00249 (2019)

  21. Nüßlein, J., Gabor, T., Linnhoff-Popien, C., Feld, S.: Algorithmic QUBO formulations for K-SAT and Hamiltonian cycles. arXiv preprint arXiv:2204.13539 (2022)

  22. Nüßlein, J., Roch, C., Gabor, T., Linnhoff-Popien, C., Feld, S.: Black box optimization using QUBO and the cross entropy method. arXiv preprint arXiv:2206.12510 (2022)

  23. Venturelli, D., Marchand, D.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv preprint arXiv:1506.08479 (2015)

  24. Zahedinejad, E., Zaribafiyan, A.: Combinatorial optimization on gate model quantum computers: a survey. arXiv preprint arXiv:1708.05294 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Nüßlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nüßlein, J., Zielinski, S., Gabor, T., Linnhoff-Popien, C., Feld, S. (2023). Solving (Max) 3-SAT via Quadratic Unconstrained Binary Optimization. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14077. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics