Skip to main content

Black Box Optimization Using QUBO and the Cross Entropy Method

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Black-box optimization (BBO) can be used to optimize functions whose analytic form is unknown. A common approach to realising BBO is to learn a surrogate model which approximates the target black-box function which can then be solved via white-box optimization methods. In this paper, we present our approach BOX-QUBO, where the surrogate model is a QUBO matrix. However, unlike in previous state-of-the-art approaches, this matrix is not trained entirely by regression, but mostly by classification between “good” and “bad” solutions. This better accounts for the low capacity of the QUBO matrix, resulting in significantly better solutions overall. We tested our approach against the state-of-the-art on four domains and in all of them BOX-QUBO showed better results. A second contribution of this paper is the idea to also solve white-box problems, i.e. problems which could be directly formulated as QUBO, by means of black-box optimization in order to reduce the size of the QUBOs to the information-theoretic minimum. Experiments show that this significantly improves the results for MAX-k-SAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber, H.G.: Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48 (2019)

    Article  Google Scholar 

  2. Baptista, R., Poloczek, M.: Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, pp. 462–471. PMLR (2018)

    Google Scholar 

  3. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15(10), 3241 (1982)

    Article  MathSciNet  Google Scholar 

  4. Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Technical report: next-generation topology of d-wave quantum processors (2019)

    Google Scholar 

  5. Chancellor, N., Zohren, S., Warburton, P.A., Benjamin, S.C., Roberts, S.: A direct mapping of max k-SAT and high order parity checks to a chimera graph. Sci. Rep. 6, 37107 (2016). https://doi.org/10.1038/srep37107

    Article  Google Scholar 

  6. Choi, V.: Adiabatic quantum algorithms for the NP-complete maximum-weight independent set, exact cover and 3SAT problems. arXiv preprint arXiv:1004.2226 (2010)

  7. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  8. Denchev, V.S., et al.: What is the computational value of finite-range tunneling? Phys. Rev. X 6(3), 031015 (2016)

    Google Scholar 

  9. Huang, T., Goh, S.T., Gopalakrishnan, S., Luo, T., Li, Q., Lau, H.C.: QROSS: QUBO relaxation parameter optimisation via learning solver surrogates. In: 2021 IEEE 41st International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 35–40. IEEE (2021)

    Google Scholar 

  10. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)

    Article  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  12. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (2000)

    Article  MathSciNet  Google Scholar 

  13. Kitai, K., et al.: Designing metamaterials with quantum annealing and factorization machines. Phys. Rev. Res. 2(1), 013319 (2020)

    Article  Google Scholar 

  14. Koshikawa, A.S., Ohzeki, M., Kadowaki, T., Tanaka, K.: Benchmark test of black-box optimization using d-wave quantum annealer. J. Phys. Soc. Jpn. 90(6), 064001 (2021)

    Article  Google Scholar 

  15. Koshikawa, A.S., et al.: Combinatorial black-box optimization for vehicle design problem. arXiv preprint arXiv:2110.00226 (2021)

  16. Lewis, M., Glover, F.: Quadratic unconstrained binary optimization problem preprocessing: theory and empirical analysis. Networks 70(2), 79–97 (2017)

    Article  MathSciNet  Google Scholar 

  17. Lodewijks, B.: Mapping NP-hard and NP-complete optimisation problems to quadratic unconstrained binary optimisation problems. arXiv preprint arXiv:1911.08043 (2019)

  18. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2(5), 1–15 (2014)

    Google Scholar 

  19. Nüßlein, J., Gabor, T., Linnhoff-Popien, C., Feld, S.: Algorithmic QUBO formulations for k-SAT and Hamiltonian cycles. arXiv preprint arXiv:2204.13539 (2022)

  20. Nüßlein, J., Roch, C., Gabor, T., Linnhoff-Popien, C., Feld, S.: Black box optimization using QUBO and the cross entropy method. arXiv preprint arXiv:2206.12510 (2022)

Download references

Acknowledgements

This publication was created as part of the Q-Grid project (13N16179) under the “quantum technologies - from basic research to market” funding program, supported by the German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Nüßlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nüßlein, J., Roch, C., Gabor, T., Stein, J., Linnhoff-Popien, C., Feld, S. (2023). Black Box Optimization Using QUBO and the Cross Entropy Method. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14077. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics