Skip to main content

Safety of Human-Robot Collaboration within the Internet of Production

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2023)

Abstract

Recent trends in globalization have led to an increased competitive pressure, particularly affecting the manufacturing industry. The Cluster of Excellence “Internet of Production” (IoP) aims at developing innovative solutions and reshaping production to enable local industries to thrive in a digitized world. These developments create new possibilities for Human-Robot Interaction (HRI) and Human-Robot Collaboration (HRC) in particular. An extended framework for the classification, analysis, and planning of HRI use cases within the cluster IoP was developed, whereby examples from preforming and assembly were introduced and classified. Due to their collaborative nature, these cases require high safety standards that protect the human from the cobot. This paper describes how the cluster IoP handles safety of human workers in HRC processes, which allows a shift towards an increased collaboration between humans and robots. In this context, this paper proposes different methods to increase safety in HRC applications. This includes the use and verification of Behavior Trees for process planning and execution, the application of Computer Vision, the design of safe robot tools, and the evaluation of human acceptance and trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pennekamp, J., et al.: Towards an infrastructure enabling the internet of production. In: 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, pp. 31–37 (2019)

    Google Scholar 

  2. Baier, R., Dammers, H., Mertens, A., et al.: A framework for the classification of human-robot interactions within the internet of production. In: Kurosu, M. (ed.) Human-Computer Interaction. Technological Innovation: Thematic Area, HCI 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26 – July 1, 2022, Proceedings, Part II, pp. 427–454. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-05409-9_33

    Chapter  Google Scholar 

  3. International Federation of Robotics (IFR): World Robotics 2022 Industrial Robots. Statistics, Market Analysis, Forecasts and Case Studies. https://ifr.org/downloads/press2018/2022_WR_extended_version.pdf

  4. Haddadin, S.: Towards Safe Robots: Approaching Asimov’s 1st Law. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-40308-8

    Book  Google Scholar 

  5. ISO: DIN EN ISO 12100:2010. Sicherheit von Maschinen (2010)

    Google Scholar 

  6. ISO: DIN EN ISO 10218-1:2021-09. Robotik – Sicherheitsanforderungen – Teil 1: Industrieroboter (ISO/DIS 10218-1.2:2021) (2021)

    Google Scholar 

  7. ISO: DIN EN ISO 10218-2:2020. Robotik – Sicherheitsanforderungen für Robotersysteme in industrieller Umgebung – Teil 2: Robotersysteme, Roboteranwendungen und Integration von Roboterzellen (2020)

    Google Scholar 

  8. ISO: ISO/TS 15066:2016-02. Robots and robotic devices - Collaborative robots. ISO (2017)

    Google Scholar 

  9. ISO: DIN EN ISO 13849-1:2015. Sicherheit von Maschinen – Sicherheitsbe-zogene Teile von Steuerungen – Teil 1: Allgemeine Gestaltungsleitsätze (2015)

    Google Scholar 

  10. ISO: DIN EN ISO 10218-1:2011 Industrieroboter – Sicherheitsanforderungen, Teil 1: Roboter (ISO 10218-1:2011)

    Google Scholar 

  11. Land, N., Syberfeldt, A., Almgren, T., Vallhagen, J.: A framework for realizing industrial human-robot collaboration through virtual simulation. Procedia CIRP 93, 1194–1199 (2020). https://doi.org/10.1016/j.procir.2020.03.019

    Article  Google Scholar 

  12. Yu, T., Huang, J., Chang, Q.: Mastering the working sequence in human-robot collaborative assembly based on reinforcement learning. IEEE Access 8, 163868–163877 (2020). https://doi.org/10.1109/ACCESS.2020.3021904

    Article  Google Scholar 

  13. Liu, H., Wang, L.: Collision-free human-robot collaboration based on context awareness. Robot. Comput. Integr. Manuf. 67, 101997 (2021). https://doi.org/10.1016/j.rcim.2020.101997

    Article  Google Scholar 

  14. Scimmi, L.S., Melchiorre, M., Troise, M., Mauro, S., Pastorelli, S.: A practical and effective layout for a safe human-robot collaborative assembly task. Appl. Sci. 11(4), 1763 (2021). https://doi.org/10.3390/app11041763

    Article  Google Scholar 

  15. Trinh, M., Petrovic, O., Brecher, C., Behery, M., Lakemeyer, G.: Kollaborative Montageprozesse mit Behavior Trees/Collaborative Assembly Processes using Behavior Trees. wt Werkstattstechnik online 112(09), 565–568 (2022). https://doi.org/10.37544/1436-4980-2022-09-37

    Article  Google Scholar 

  16. Estin & Co.: JEC Observer - Current trends in the global composites industry 2021–2026. JEC Group, Paris (2022)

    Google Scholar 

  17. Elkington, M., Bloom, D., Ward, C., Chatzimichali, A., Potter, K.: Hand layup: understanding the manual process. Adv. Manuf. Polym. Compos. Sci. 1(3), 138–151 (2015). https://doi.org/10.1080/20550340.2015.1114801

    Article  Google Scholar 

  18. Eitzinger, C., Frommel, C., Ghidoni, S., Villagrossi, E.: System concept for human-robot collaborative draping. In: SAMPE Europe Conference. Baden/Zürich, Schweiz

    Google Scholar 

  19. Frketic, J., Dickens, T., Ramakrishnan, S.: Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: an additive review of contemporary and modern techniques for advanced materials manufacturing. Addit. Manuf. 14, 69–86 (2017). https://doi.org/10.1016/j.addma.2017.01.003

    Article  Google Scholar 

  20. Fleischer, J., Teti, R., Lanza, G., Mativenga, P., Möhring, H.-C., Caggiano, A.: Composite materials parts manufacturing. CIRP Ann. 67(2), 603–626 (2018). https://doi.org/10.1016/j.cirp.2018.05.005

    Article  Google Scholar 

  21. Dammers, H., Vervier, L., Mittelviefhaus, L., Brauner, P., Ziefle, M., Gries, T.: Usability of human-robot interaction within textile production: insights into the acceptance of different collaboration types. Usability and User Experience (2022)

    Google Scholar 

  22. Dammers, H., Lennartz, M., Gries, T., Greb, C.: Human-robot collaboration in composite preforming: chances and challenges

    Google Scholar 

  23. Iovino, M., Scukins, E., Styrud, J., Ögren, P., Smith, C.: A survey of behavior trees in robotics and AI. Robot. Auton. Syst. 154, 104096 (2022). https://doi.org/10.1016/j.robot.2022.104096

    Article  Google Scholar 

  24. Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and AI. CRC Press (2018). https://doi.org/10.1201/9780429489105

    Book  Google Scholar 

  25. Henn, T., Völker, M., Kowalewski, S., Trinh, M., Petrovic, O., Brecher, C.: Verification of behavior trees using linear constrained horn clauses. In: Groote, J.F., Huisman, M. (eds.) Lecture Notes in Computer Science, Formal Methods for Industrial Critical Systems, pp. 211–225. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  26. Spencer, B.F., Hoskere, V., Narazaki, Y.: Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering 5(2), 199–222 (2019). https://doi.org/10.1016/j.eng.2018.11.030

    Article  Google Scholar 

  27. Jocher, G., et al.: ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation: Zenodo (2022)

    Google Scholar 

  28. Bradski, G.: The OpenCV library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  29. Trinh, M., et al.: Safe and flexible planning of collaborative assembly processes using behavior trees and computer vision. Intell. Hum. Syst. Integr. (IHSI) 2023(69)

    Google Scholar 

  30. Hofbaur, M., Rathmair, M.: Physische sicherheit in der mensch-roboter kollaboration. Elektrotech. Inftech. 136(7), 301–306 (2019). https://doi.org/10.1007/s00502-019-00743-2

    Article  Google Scholar 

  31. Kossmann, M.-R.: Sicherheit in der Mensch-Roboter-Interaktion durch einen biofidelen Bewertungsansatz: Dissertation

    Google Scholar 

  32. Zhang, L., Wang, Z., Yang, Q., Bao, G., Qian, S.: Development and simulation of ZJUT hand based on flexible pneumatic actuator FPA. In: 2009 International Conference on Mechatronics and Automation, Changchun, China, pp. 1634–1639 (2009)

    Google Scholar 

  33. Grebenstein, M.: Approaching Human Performance. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-03593-2

    Book  Google Scholar 

  34. Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Factors 39(2), 230–253 (1997). https://doi.org/10.1518/001872097778543886

    Article  Google Scholar 

  35. Aroyo, A.M., et al.: Overtrusting robots: Setting a research agenda to mitigate overtrust in automation. Paladyn, J. Behav. Robot. 12(1), 423–436 (2021). https://doi.org/10.1515/pjbr-2021-0029

    Article  Google Scholar 

  36. Yagoda, R.E., Gillan, D.J.: You want me to trust a ROBOT? The development of a human-robot interaction trust scale. Int J of Soc Robotics 4(3), 235–248 (2012). https://doi.org/10.1007/s12369-012-0144-0

    Article  Google Scholar 

  37. Bröhl, C., Nelles, J., Brandl, C., Mertens, A., Nitsch, V.: Human–robot collaboration acceptance model: development and comparison for Germany, Japan, China and the USA. Int. J. Soc. Robot. 11(5), 709–726 (2019). https://doi.org/10.1007/s12369-019-00593-0

    Article  Google Scholar 

  38. Esterwood, C., Essenmacher, K., Yang, H., Zeng, F., Robert, L.P.: A meta-analysis of human personality and robot acceptance in human-robot interaction. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama Japan, pp. 1–18 (2021)

    Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungs gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet of Production – 390621612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Trinh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trinh, M. et al. (2023). Safety of Human-Robot Collaboration within the Internet of Production. In: Nah, F., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2023. Lecture Notes in Computer Science, vol 14039. Springer, Cham. https://doi.org/10.1007/978-3-031-36049-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36049-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36048-0

  • Online ISBN: 978-3-031-36049-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics