Abstract
This paper presents an architectural proposal for enhancing anomaly detection in the CyberSec4Europe project use case Open Banking. It proposes a trusted privacy-preserving ecosystem of threat intelligence platforms, based on MISP, to automatically exchange and process cyber threat information in an auditable and privacy-preserving manner. Additionally, a Federated Learning scheme is deployed to share machine learning models trained on a synthetic fraud transactions dataset, and the impact of data anonymization on model accuracy is measured and analyzed. This proposal provides a valuable contribution to the development of robust and efficient threat detection systems to enhance the resilience of organizations in the financial sector.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Standards and tools for exchange and processing of actionable information (Nov 2014), https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information
Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018)
Ali, H., Papadopoulos, P., Ahmad, J., Pitropakis, N., Jaroucheh, Z., Buchanan, W.: Privacy-preserving and trusted threat intelligence sharing using distributed ledgers (12 2021)
Alishahi, M., Saracino, A., Martinelli, F., Marra, A.: Privacy preserving data sharing and analysis for edge-based architectures. Int. J. Inf. Secur. 21, 1–23 (02 2022). https://doi.org/10.1007/s10207-021-00542-x
Badsha, S., Vakilinia, I., Sengupta, S.: Privacy preserving cyber threat information sharing and learning for cyber defense. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0708–0714 (2019). https://doi.org/10.1109/CCWC.2019.8666477
Beutel, D.J., et al.: Flower: a friendly federated learning research framework (2020). https://arxiv.org/abs/2007.14390
Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
Bridle, J.S.: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In: Proceedings of the 2nd International Conference on Neural Information Processing Systems, pp. 211–217. NIPS’89, MIT Press, Cambridge, MA, USA (1989)
Campos, E.M., et al.: Evaluating federated learning for intrusion detection in internet of things: review and challenges. Comput. Netw. 203, 108661 (2022). https://doi.org/10.1016/j.comnet.2021.108661, https://www.sciencedirect.com/science/article/pii/S1389128621005405
van Haastrecht, M., et al.: A shared cyber threat intelligence solution for SMEs. Electronics 10(23) (2021). https://doi.org/10.3390/electronics10232913, https://www.mdpi.com/2079-9292/10/23/2913
He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008). https://doi.org/10.1109/IJCNN.2008.4633969
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://arxiv.org/abs/1412.6980
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115 (2007). https://doi.org/10.1109/ICDE.2007.367856
Lopez-Rojas, E.A., Elmir, A., Axelsson, S.: Paysim: a financial mobile money simulator for fraud detection (09 2016)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3-es (Mar 2007). https://doi.org/10.1145/1217299.1217302
McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Preuveneers, D., Joosen, W.: Sharing machine learning models as indicators of compromise for cyber threat intelligence. J. Cybersecur. Privacy, 140–163 (04 2021). https://doi.org/10.3390/jcp1010008
Preuveneers, D., Joosen, W., Bernal Bernabe, J., Skarmeta, A.: Distributed security framework for reliable threat intelligence sharing. Security and Communication Networks 2020 (2020)
Rahman, S.A., Tout, H., Talhi, C., Mourad, A.: Internet of things intrusion detection: centralized, on-device, or federated learning? IEEE Netw. 34(6), 310–317 (2020). https://doi.org/10.1109/MNET.011.2000286
Sa’adah, S., Pratiwi, M.S.: Classification of customer actions on digital money transactions on Paysim mobile money simulator using probabilistic neural network (PNN) algorithm. In: 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 677–681 (2020). https://doi.org/10.1109/ISRITI51436.2020.9315344
Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (oct 2002). https://doi.org/10.1142/S0218488502001648
Wagner, T.D., Mahbub, K., Palomar, E., Abdallah, A.E.: Cyber threat intelligence sharing: survey and research directions. Comput. Secur. 87, 101589 (2019). https://doi.org/10.1016/j.cose.2019.101589, https://www.sciencedirect.com/science/article/pii/S016740481830467X
Yu, P., Kundu, A., Wynter, L., Lim, S.H.: Fed+: a unified approach to robust personalized federated learning (2021)
Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, T.N.: Statistical model aggregation via parameter matching (2019)
Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, T.N., Khazaeni, Y.: Bayesian nonparametric federated learning of neural networks (2019)
Acknowledgments
This work has received funding from the Grant PID 2020-112675RB-C44 funded by MCIN/AEI/10.13039/501100011033. It has been also partially funded by the European Commission through the H2020 project CyberSec4Europe (g.a. 830929).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Saura, P.F., Gil, J.F.M., Bernabé, J.B., Skarmeta, A. (2023). Privacy-Preserving Cyber Threat Information Sharing Leveraging FL-Based Intrusion Detection in the Financial Sector. In: Skarmeta, A., Canavese, D., Lioy, A., Matheu, S. (eds) Digital Sovereignty in Cyber Security: New Challenges in Future Vision. CyberSec4Europe 2022. Communications in Computer and Information Science, vol 1807. Springer, Cham. https://doi.org/10.1007/978-3-031-36096-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-36096-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36095-4
Online ISBN: 978-3-031-36096-1
eBook Packages: Computer ScienceComputer Science (R0)