Skip to main content

Privacy-Preserving Cyber Threat Information Sharing Leveraging FL-Based Intrusion Detection in the Financial Sector

  • Conference paper
  • First Online:
Digital Sovereignty in Cyber Security: New Challenges in Future Vision (CyberSec4Europe 2022)

Abstract

This paper presents an architectural proposal for enhancing anomaly detection in the CyberSec4Europe project use case Open Banking. It proposes a trusted privacy-preserving ecosystem of threat intelligence platforms, based on MISP, to automatically exchange and process cyber threat information in an auditable and privacy-preserving manner. Additionally, a Federated Learning scheme is deployed to share machine learning models trained on a synthetic fraud transactions dataset, and the impact of data anonymization on model accuracy is measured and analyzed. This proposal provides a valuable contribution to the development of robust and efficient threat detection systems to enhance the resilience of organizations in the financial sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Standards and tools for exchange and processing of actionable information (Nov 2014), https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information

  2. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018)

  3. Ali, H., Papadopoulos, P., Ahmad, J., Pitropakis, N., Jaroucheh, Z., Buchanan, W.: Privacy-preserving and trusted threat intelligence sharing using distributed ledgers (12 2021)

    Google Scholar 

  4. Alishahi, M., Saracino, A., Martinelli, F., Marra, A.: Privacy preserving data sharing and analysis for edge-based architectures. Int. J. Inf. Secur. 21, 1–23 (02 2022). https://doi.org/10.1007/s10207-021-00542-x

  5. Badsha, S., Vakilinia, I., Sengupta, S.: Privacy preserving cyber threat information sharing and learning for cyber defense. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0708–0714 (2019). https://doi.org/10.1109/CCWC.2019.8666477

  6. Beutel, D.J., et al.: Flower: a friendly federated learning research framework (2020). https://arxiv.org/abs/2007.14390

  7. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf

  8. Bridle, J.S.: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In: Proceedings of the 2nd International Conference on Neural Information Processing Systems, pp. 211–217. NIPS’89, MIT Press, Cambridge, MA, USA (1989)

    Google Scholar 

  9. Campos, E.M., et al.: Evaluating federated learning for intrusion detection in internet of things: review and challenges. Comput. Netw. 203, 108661 (2022). https://doi.org/10.1016/j.comnet.2021.108661, https://www.sciencedirect.com/science/article/pii/S1389128621005405

  10. van Haastrecht, M., et al.: A shared cyber threat intelligence solution for SMEs. Electronics 10(23) (2021). https://doi.org/10.3390/electronics10232913, https://www.mdpi.com/2079-9292/10/23/2913

  11. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008). https://doi.org/10.1109/IJCNN.2008.4633969

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://arxiv.org/abs/1412.6980

  13. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115 (2007). https://doi.org/10.1109/ICDE.2007.367856

  14. Lopez-Rojas, E.A., Elmir, A., Axelsson, S.: Paysim: a financial mobile money simulator for fraud detection (09 2016)

    Google Scholar 

  15. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3-es (Mar 2007). https://doi.org/10.1145/1217299.1217302

  16. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  17. Preuveneers, D., Joosen, W.: Sharing machine learning models as indicators of compromise for cyber threat intelligence. J. Cybersecur. Privacy, 140–163 (04 2021). https://doi.org/10.3390/jcp1010008

  18. Preuveneers, D., Joosen, W., Bernal Bernabe, J., Skarmeta, A.: Distributed security framework for reliable threat intelligence sharing. Security and Communication Networks 2020 (2020)

    Google Scholar 

  19. Rahman, S.A., Tout, H., Talhi, C., Mourad, A.: Internet of things intrusion detection: centralized, on-device, or federated learning? IEEE Netw. 34(6), 310–317 (2020). https://doi.org/10.1109/MNET.011.2000286

    Article  Google Scholar 

  20. Sa’adah, S., Pratiwi, M.S.: Classification of customer actions on digital money transactions on Paysim mobile money simulator using probabilistic neural network (PNN) algorithm. In: 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 677–681 (2020). https://doi.org/10.1109/ISRITI51436.2020.9315344

  21. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (oct 2002). https://doi.org/10.1142/S0218488502001648

  22. Wagner, T.D., Mahbub, K., Palomar, E., Abdallah, A.E.: Cyber threat intelligence sharing: survey and research directions. Comput. Secur. 87, 101589 (2019). https://doi.org/10.1016/j.cose.2019.101589, https://www.sciencedirect.com/science/article/pii/S016740481830467X

  23. Yu, P., Kundu, A., Wynter, L., Lim, S.H.: Fed+: a unified approach to robust personalized federated learning (2021)

    Google Scholar 

  24. Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, T.N.: Statistical model aggregation via parameter matching (2019)

    Google Scholar 

  25. Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, T.N., Khazaeni, Y.: Bayesian nonparametric federated learning of neural networks (2019)

    Google Scholar 

Download references

Acknowledgments

This work has received funding from the Grant PID 2020-112675RB-C44 funded by MCIN/AEI/10.13039/501100011033. It has been also partially funded by the European Commission through the H2020 project CyberSec4Europe (g.a. 830929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Fernández Saura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saura, P.F., Gil, J.F.M., Bernabé, J.B., Skarmeta, A. (2023). Privacy-Preserving Cyber Threat Information Sharing Leveraging FL-Based Intrusion Detection in the Financial Sector. In: Skarmeta, A., Canavese, D., Lioy, A., Matheu, S. (eds) Digital Sovereignty in Cyber Security: New Challenges in Future Vision. CyberSec4Europe 2022. Communications in Computer and Information Science, vol 1807. Springer, Cham. https://doi.org/10.1007/978-3-031-36096-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36096-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36095-4

  • Online ISBN: 978-3-031-36096-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics