Skip to main content

Generative Methods for Out-of-distribution Prediction and Applications for Threat Detection and Analysis: A Short Review

  • Conference paper
  • First Online:
Digital Sovereignty in Cyber Security: New Challenges in Future Vision (CyberSec4Europe 2022)

Abstract

In recent times, Machine Learning has played an important role in developing novel advanced tools for threat detection and mitigation. Intrusion Detection, Misinformation, Malware, and Fraud Detection are just some examples of cybersecurity fields in which Machine Learning techniques are used to reveal the presence of malicious behaviors. However, Out-of-Distribution, i.e., the potential distribution gap between training and test set, can heavily affect the performances of the traditional Machine Learning based methods. Indeed, they could fail in identifying out-of-samples as possible threats, therefore devising robust approaches to cope with this issue is a crucial and relevant challenge to mitigate the risk of undetected attacks. Moreover, a recent emerging line proposes to use generative models to yield synthetic likely examples to feed the learning algorithms. In this work, we first survey recent Machine Learning and Deep Learning based solutions to face both the problems, i.e., outlier detection and generation; then we illustrate the main cybersecurity application scenarios in which these approaches have been adopted successfully.

E. Coppolillo, A. Liguori, M. Guarascio, and F. Sergio Pisani—Equally contributed to the paper and are all considered first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghakhani, H., Machiry, A., Nilizadeh, S., Kruegel, C., Vigna, G.: Detecting deceptive reviews using generative adversarial networks. CoRR abs/1805.10364 (2018)

    Google Scholar 

  2. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: ACCV (2018)

    Google Scholar 

  3. Akçay, S., Atapour-Abarghouei, A., Breckon, T.P.: Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection. In: IJCNN (2019)

    Google Scholar 

  4. Alfeo, A.L., Cimino, M.G., Manco, G., Ritacco, E., Vaglini, G.: Using an autoencoder in the design of an anomaly detector for smart manufacturing. Pattern Recogn. Lett. 136, 272–278 (2020)

    Google Scholar 

  5. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability (2015). http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf

  6. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. CoRR (2020)

    Google Scholar 

  7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Computing Surveys (CSUR) 41, 1–72 (2009)

    Google Scholar 

  8. Chen, H., Jiang, L.: Gan-based method for cyber-intrusion detection. CoRR abs/1904.02426 (2019)

    Google Scholar 

  9. Chen, J., Shen, Y., Ali, R.: Credit card fraud detection using sparse autoencoder and generative adversarial network. 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1054–1059 (2018)

    Google Scholar 

  10. Chen, J., Sathe, S., Aggarwal, C., Turaga, D.: Outlier detection with autoencoder ensembles. In: SDM (2017)

    Google Scholar 

  11. Chen, Z., Yeo, C.K., Lee, B.S., Lau, C.T.: Autoencoder-based network anomaly detection. In: WTS (2018)

    Google Scholar 

  12. Das, S.: FGAN: federated generative adversarial networks for anomaly detection in network traffic (2022). https://doi.org/10.48550/ARXIV.2203.11106. https://arxiv.org/abs/2203.11106

  13. Fiore, U., De Santis, A., Perla, F., Zanetti, P., Palmieri, F.: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Inf. Sci. 479, 448–455 (2019). https://doi.org/10.1016/j.ins.2017.12.030. https://www.sciencedirect.com/science/article/pii/S0020025517311519

  14. Folino, F., Folino, G., Guarascio, M., Pisani, F., Pontieri, L.: On learning effective ensembles of deep neural networks for intrusion detection. Inf. Fusion 72, 48–69 (2021). https://doi.org/10.1016/j.inffus.2021.02.007. https://www.sciencedirect.com/science/article/pii/S1566253521000245

  15. Fu, Y., Lan, Q.: Deep generative model for malware detection. In: 2020 Chinese Control And Decision Conference (CCDC), pp. 2072–2077 (2020). https://doi.org/10.1109/CCDC49329.2020.9164231

  16. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  17. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2

  18. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial examples for malware detection. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 62–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_4

    Chapter  Google Scholar 

  19. Guarascio, M., Manco, G., Ritacco, E.: Deep learning. Encycl. Bioinform. Comput. Biol. ABC Bioinf. 1–3, 634–647 (2018)

    Google Scholar 

  20. Guarascio, M., Cassavia, N., Pisani, F.S., Manco, G.: Boosting cyber-threat intelligence via collaborative intrusion detection. Future Gener. Comput. Syst. 135, 30–43 (2022). https://doi.org/10.1016/j.future.2022.04.028. https://www.sciencedirect.com/science/article/pii/S0167739X22001571

  21. Han, X., Chen, X., Liu, L.P.: Gan ensemble for anomaly detection. In: AAAI (2020)

    Google Scholar 

  22. Hardy, W., Chen, L., Hou, S., Ye, Y., Li, X.: DL 4 MD : a deep learning framework for intelligent malware detection (2016)

    Google Scholar 

  23. Hawkins, S., He, H., Williams, G.J., Baxter, R.A.: Outlier detection using replicator neural networks. In: DaWaK (2002)

    Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  25. Hsu, C., Lee, C., Zhuang, Y.: Learning to detect fake face images in the wild. CoRR abs/1809.08754 (2018)

    Google Scholar 

  26. Kim, J.Y., Bu, S.J., Cho, S.B.: Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders. Inf. Sci. 460–461, 83–102 (2018). https://doi.org/10.1016/j.ins.2018.04.092. https://www.sciencedirect.com/science/article/pii/S0020025518303475

  27. Kim, J.Y., Cho, S.B.: Obfuscated malware detection using deep generative model based on global/local features. Comput. Secur. 112, 102501 (2022). https://doi.org/10.1016/j.cose.2021.102501

    Article  Google Scholar 

  28. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  29. Laptev, N.: Anogen: Deep anomaly generator (2018). https://tinyurl.com/fbanogen

  30. Le Cun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  31. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  32. Liguori, A., Manco, G., Pisani, F.S., Ritacco, E.: Adversarial regularized reconstruction for anomaly detection and generation. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 1204–1209 (2021). https://doi.org/10.1109/ICDM51629.2021.00145

  33. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM (2008)

    Google Scholar 

  34. Mattia, F.D., Galeone, P., Simoni, M.D., Ghelfi, E.: A survey on GANs for anomaly detection. CoRR (2019)

    Google Scholar 

  35. Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., Payne, B.D.: Evaluating computer intrusion detection systems: a survey of common practices. ACM Comput. Surv. 48(1), 2808691 (2015). https://doi.org/10.1145/2808691

  36. Ngo, C.P., Winarto, A.A., Li, C.K.K., Park, S., Akram, F., Lee, H.K.: Fence GAN: towards better anomaly detection. In: ICTAI (2019)

    Google Scholar 

  37. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(1), 1–38 (2021)

    Google Scholar 

  38. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: SIGMOID (2000)

    Google Scholar 

  39. Rathore, H., Agarwal, S., Sahay, S.K., Sewak, M.: Malware detection using machine learning and deep learning. In: Mondal, A., Gupta, H., Srivastava, J., Reddy, P.K., Somayajulu, D.V.L.N. (eds.) BDA 2018. LNCS, vol. 11297, pp. 402–411. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04780-1_28

    Chapter  Google Scholar 

  40. Rizzo, S.G., Pang, L., Chen, Y., Chawla, S.: Probabilistic outlier detection and generation. CoRR (2020)

    Google Scholar 

  41. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE (2021)

    Google Scholar 

  42. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS (2016)

    Google Scholar 

  43. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis 54, 30–44 (2019)

    Google Scholar 

  44. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: IPMI (2017)

    Google Scholar 

  45. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C., et al.: Support vector method for novelty detection. In: NIPS (1999)

    Google Scholar 

  46. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. CoRR abs/1708.01967 (2017)

    Google Scholar 

  47. Suciu, O., Coull, S., Johns, J.: Exploring adversarial examples in malware detection, pp. 8–14 (2019). https://doi.org/10.1109/SPW.2019.00015

  48. Tian, K., Zhou, S., Fan, J., Guan, J.: Learning competitive and discriminative reconstructions for anomaly detection. In: AAAI 33 (2019)

    Google Scholar 

  49. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. In: ICLR (2019)

    Google Scholar 

  50. Vu, H.S., Ueta, D., Hashimoto, K., Maeno, K., Pranata, S., Shen, S.M.: Anomaly detection with adversarial dual autoencoders. CoRR (2019)

    Google Scholar 

  51. Wang, Q., Guo, W., Zhang, K., Xing, X., Giles, C., Liu, X.: Random feature nullification for adversary resistant deep architecture (2016)

    Google Scholar 

  52. Xia, X., et al.: GAN-based anomaly detection: a review. Neurocomputing 493, 497–535 (2022). https://doi.org/10.1016/j.neucom.2021.12.093. https://www.sciencedirect.com/science/article/pii/S0925231221019482

  53. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection. CoRR (2019)

    Google Scholar 

  54. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar, V.R.: Adversarially learned anomaly detection. In: ICDM (2018)

    Google Scholar 

  55. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: KDD (2017)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by EU H2020-SU-ICT-03-2018 Project No. 830929 CyberSec4Europe (cybersec4europe.eu) and by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica Liguori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coppolillo, E., Liguori, A., Guarascio, M., Pisani, F.S., Manco, G. (2023). Generative Methods for Out-of-distribution Prediction and Applications for Threat Detection and Analysis: A Short Review. In: Skarmeta, A., Canavese, D., Lioy, A., Matheu, S. (eds) Digital Sovereignty in Cyber Security: New Challenges in Future Vision. CyberSec4Europe 2022. Communications in Computer and Information Science, vol 1807. Springer, Cham. https://doi.org/10.1007/978-3-031-36096-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36096-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36095-4

  • Online ISBN: 978-3-031-36096-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics