Skip to main content

User-Guided Machine Understanding of Legal Documents

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI-isAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13856))

Included in the following conference series:

  • 273 Accesses

Abstract

We present a novel approach to gaining a machine understanding of a legal document and then modelling the logic of that document in an integrated process. This paper describes a smart editor that uses a declarative language to represent both the ontology and logic models of a legal document. A document is incrementally elaborated in a fixed sequence of steps beginning with an ontology discovery step that identifies the explicit and implicit artefacts and applicable constraints. This information is used to generate code representations paired with words and icons which provide the foundation required for modelling the legal logic. The pairing with words and icons achieves a formal correspondence that allows logic modelling via either a textual or a graphical means. Similarly, this mechanism also supports both verbal and visual user feedback, enhancing user understanding. The tree of rules produced during this process is embedded in the original legal document, which can then be used as a smart contract on a modified blockchain. The integrated use of a declarative language auto-generated from a smart user interface for modelling both the ontology and the logic of a legal document, provides a simplicity and agility that enables domain experts to create and test custom smart contracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Working with Contracts, Practical assistance for small business managers (2019). https://treasury.gov.au/sites/default/files/2019-03/WorkingWithContractsGuide.pdf

  2. Levi, S., Lipton, A.: An introduction to smart contracts and their potential and inherent limitations. Forum on Corporate Governance (2018). https://corpgov.law.harvard.edu/2018/05/26/an-introduction-to-smart-contracts-and-their-potential-and-inherent-limitations/

  3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  4. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tessaris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2_2

    Chapter  Google Scholar 

  5. Thompson Reuters: HighQ Document Automation (2021). https://legal.thomsonreuters.com/en/products/highq/document-automation

  6. Solidity. https://docs.soliditylang.org/en/v0.8.9/

  7. OpenZeppelin. Build Secure Smart Contracts in Solidity. https://openzeppelin.com/contracts/

  8. Potassco. clingo and gringo (2021). http://potassco.org/clingo/

  9. Febbraro, O., et al.: ASPIDE: integrated development environment for answer set programming. University of Calabria. (2021) https://www.mat.unical.it/ricca/aspide/index.html

  10. Grigg I.: The Ricardian contract. In: Proceedings of First IEEE International Workshop on Electronic Contracting, San Diego, CA, USA, pp. 25–31 (2004). https://doi.org/10.1109/WEC.2004.1319505

  11. Choudhury, O., et al.: Auto-generation of smart contracts from domain-specific ontologies and semantic rules (2018). https://doi.org/10.1109/Cybermatics_2018.2018.00183

  12. Maedche, A., Staab, S.: The TEXT-TO-ONTO Ontology Learning Environment. Institute AIFB, University of Karlsruhe (2000)

    Google Scholar 

  13. Konys, A.: Knowledge Repository of Ontology Learning Tools from Text. Procedia Comput. Sci. 159, 1614–1628 (2019)

    Article  Google Scholar 

  14. Falkner, A., et al.: Industrial applications of answer set programming. KI - Künstliche Intelligenz 32(2–3), 165–176 (2018)

    Article  Google Scholar 

  15. Kloimüllner, C., et al.: Kara: a system for visualising and visual editing of interpretations for answer set programs. In: Proceedings INAP. arXiv:1109.4095. (2011)

  16. Calimeri, F., et al.: ASP-core-2 input language format. Theory Pract. Logic Program. 20(2), 294–309 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. EIP-150 Revision (2017). http://www.gavwood.com/paper.pdf

  18. Hjort, R.: Formally verifying webassembly with KWasm (2020). https://odr.chalmers.se/handle/20.500.12380/300761

  19. Moritz, D.: Clingo WebAssembly (2021). https://github.com/domoritz/clingo-wasm

  20. Batsakis, S., et al.: Legal representation and reasoning in practice: a critical comparison. In: JURIX, pp. 31–40 (2018)

    Google Scholar 

  21. Stanford Encyclopedia of Philosophy (2021). https://plato.stanford.edu/contents.html

  22. Purnell, K., Schwitter, R.: Towards Declarative Smart Contracts. In: Proceedings of The 4th Symposium on Distributed Ledger Technology (2019). https://symposium-dlt.org/SDLT2019-FinalProceedings.pdf

  23. Getty Research Institute (2021). https://www.getty.edu/research/publications/electronic_publications/intro_controlled_vocab/what.pdf

  24. Giordano, L., Dupré, D.T.: Enriched modeling and reasoning on business processes with ontologies and answer set programming (2018). https://doi.org/10.1007/978-3-319-98651-7_5

  25. Sergot, M., et al.: The British nationality act as a logic program. Commun. ACM 29, 370–386 (1986). https://doi.org/10.1145/5689.5920

    Article  Google Scholar 

  26. Norman, D., Nielsen, J.: Nielsen norman group. beyond the NPS: measuring perceived usability with the SUS, NASA-TLX, and the single ease question after tasks and usability tests (2018). https://www.nngroup.com/articles/measuring-perceived-usability/

  27. Salik, I., Ashurst, J.V.: Closed loop communication training in medical simulation (2019). https://www.statpearls.com/articlelibrary/viewarticle/63796/

  28. Rodrigues, C., et al.: Legal ontologies over time: a systematic mapping study. Expert Syst. Appl. 130, 12–30 (2019). https://doi.org/10.1016/j.eswa.2019.04.009

    Article  Google Scholar 

  29. Bench-Capon, T., et al.: A history of AI and Law in 50 papers: 25 years of the international conference on AI and law. ICAIL 20, 215–319 (2012) https://www.csc.liv.ac.uk/%20tbc/publications/ICAIL25AuthorsVersion.pdf

  30. Antoniou, G.: Nonmonotonic rule systems on top of ontology layers. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 394–398. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48005-6_30

    Chapter  Google Scholar 

  31. Herrestad, H.: Norms and formalization. In: Proceedings of the 3rd International Conference on Artificial Intelligence and Law. ICAIL 1991, pp. 175–184, May 1991. https://doi.org/10.1145/112646.112667

  32. SDEv4: Smart Document Editor v4 prototype (2022). http://130.56.246.229

  33. Panagiotidi, S., Nieves, J., Vázquez-Salceda, J.: A framework to model norm dynamics in answer set programming. In: CEUR Workshop Proceedings, vol. 494 (2009)

    Google Scholar 

  34. De Vos, M., Padget, J., Satoh, K.: Legal modelling and reasoning using institutions. In: Onada, T., Bekki, D., McCready, E. (eds.) JSAI-isAI 2010. LNCS (LNAI), vol. 6797, pp. 129–140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25655-4_12

    Chapter  Google Scholar 

  35. Sileno, G., Boer, A., van Engers, T.: A petri net-based notation for normative modeling: evaluation on deontic paradoxes. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015-2017. LNCS (LNAI), vol. 10791, pp. 89–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00178-0_6

    Chapter  Google Scholar 

  36. Kowalski, R., Satoh, K.: Obligation as optimal goal satisfaction. J. Philos. Log. 47(4), 579–609 (2017). https://doi.org/10.1007/s10992-017-9440-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Lam, H., Governatori, G., Riveret, R.: On ASPIC+ and defeasible logic (2016). https://doi.org/10.3233/978-1-61499-686-6-359

  38. Governatori, G., Casanovas, P., Koker, L.: On the formal representation of the Australian spent conviction scheme (2020). https://doi.org/10.26181/6073968f457d2

  39. Schwitter, R.: Specifying and verbalising answer set programs in controlled natural language. Theory Pract. Logic Program. 18, 691–705 (2018). https://doi.org/10.1017/S1471068418000327

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Purnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Purnell, K., Schwitter, R. (2023). User-Guided Machine Understanding of Legal Documents. In: Yada, K., Takama, Y., Mineshima, K., Satoh, K. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2021. Lecture Notes in Computer Science(), vol 13856. Springer, Cham. https://doi.org/10.1007/978-3-031-36190-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36190-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36189-0

  • Online ISBN: 978-3-031-36190-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics