Abstract
When evolutionary computation techniques are used to solve continuous optimization problems, usually, convex combination is used as a crossover operation. Empirically, this crossover operation works well, but this success is, from the foundational viewpoint, a challenge: why this crossover operation works well is not clear. In this paper, we provide a theoretical explanation for this empirical success.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Castelli, L. Manzoni, GSGP-C++ 2.0: a geometric semantic genetic programming framework. SoftwareX, vol. 10, paper 100313 (2019)
K. Krawiec, T. Pawlak, Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Gen. Program. Evol. Mach. 14, 31–63 (2013)
A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic programming, in Parallel Problem Solving from Nature PPSN’XII (Springer, Heidelberg, Germany, 2012), pp. 21–31
T.P. Pawlak, B. Wieloch, K. Krawiec, Review and comparative analysis of geometric semantic crossovers. Gen. Program. Evol. Mach. 16, 351–386 (2015)
Acknowledgements
This work was supported in part by the National Science Foundation grants 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes), and by the AT&T Fellowship in Information Technology.
It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and by a grant from the Hungarian National Research, Development and Innovation Office (NRDI).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cohen, K., Kosheleva, O., Kreinovich, V. (2023). Why Convex Combination is an Effective Crossover Operation in Continuous Optimization: A Theoretical Explanation. In: Ceberio, M., Kreinovich, V. (eds) Uncertainty, Constraints, and Decision Making. Studies in Systems, Decision and Control, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-031-36394-8_54
Download citation
DOI: https://doi.org/10.1007/978-3-031-36394-8_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36393-1
Online ISBN: 978-3-031-36394-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)