Skip to main content

Design and Development of Walking Monitoring System for Gait Analysis

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2023)

Abstract

Athletes, coaches and physical therapists are interested in learning how different running styles affect the muscles and forces as well as the gait cycle of runners. This paper focuses on the measurement and examination of walking patterns in people’s lower half of the human body or the leg. The stance phase and swing phase are used for the Gait Analysis. It is employed to treat patients appropriately and improve gait abnormalities. Data were collected from two different age groups of people by placing sensors on the leg and the person was asked to walk on a treadmill for 5 min. The Gyro Sensor and The MPU 6050 3-Axis Accelerometer was inturn connected to the Arduino microcontroller and were processed to get gait parameters. The result showed that the design was less costly, and the wearable sensor was used for effective analysis of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raghavendra, P., Talasila, V., Sridhar, V., Debur, R.: Triggering a functional electrical stimulator based on gesture for stroke-induced movement disorder. In: Vishwakarma, H.R., Akashe, S. (eds.) Computing and Network Sustainability. LNNS, vol. 12, pp. 61–71. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3935-5_7

    Chapter  Google Scholar 

  2. Tao, W., Liu, T., Zheng, R., Feng, H.: Gait analysis using wearable sensors. Sensors 12(2), 2255–2283 (2012). https://doi.org/10.3390/s120202255

    Article  Google Scholar 

  3. Yam, C., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recogn. 37(5), 1057–1072 (2004). https://doi.org/10.1016/j.patcog.2003.09.012

    Article  Google Scholar 

  4. Elharrouss, O., Almaadeed, N., Al-Maadeed, S., Bouridane, A.: Gait recognition for person re-identification. J. Supercomput. 77(4), 3653–3672 (2020). https://doi.org/10.1007/s11227-020-03409-5

    Article  Google Scholar 

  5. Yoo, J.-H., Nixon, M.S.: Automated markerless analysis of human gait motion for recognition and classification. ETRI J. 33(2), 259–266 (2011)

    Article  Google Scholar 

  6. Fei, F., Leng, Y., Yang, M., Wu, C., Yang, D.: Development of a wearable human gait analysis system based on plantar pressure sensors. In: Proceedings of IEEE 2nd International Conference on Micro/Nano Sensors for AI, Healthcare and Robotics, Shenzhen, China, pp. 506–510 (2019). https://doi.org/10.1109/NSENS49395.2019.9293994

  7. Tawaki, Y., Nishimura, T., Murakami, T.: Monitoring of gait features during outdoor walking by simple foot mounted IMU system. In: Proceedings of IEEE Industrial Electronics Society, Singapore, pp. 3413–3418 (2020). https://doi.org/10.1109/IECON43393.2020.9254427

  8. Bamberg, S.J.M., et al.: Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12(4), 413–423 (2008)

    Article  Google Scholar 

  9. Jhapate, A.K., Singh, J.P.: Gait based human recognition system using single triangle. Int. J. Comput. Sci. Technol. 2(2) (2011)

    Google Scholar 

  10. Gowtham Bhargavas, M., Harshavardhan, K., Mohan, G.C., Nikhil Sharma, A., Prathap, C.: Human identification using gait recognition. In: Proceedings of International Conference on Communication and Signal Processing, India, 6–8 April 2017, pp. 1510–1513 (2017). https://doi.org/10.1109/iccsp.2017.8286638

  11. Stöckel, T., Jacksteit, R., Behrens, M., Skripitz, R., Bader, R., Mau-Moeller, A.: The mental representation of the human gait in young and older adults. Front. Psychol. 6, 943 (2015). https://doi.org/10.3389/fpsyg.2015.00943

    Article  Google Scholar 

  12. Supreeth, S., Patil, K., Patil, S.D., Rohith, S., Vishwanath, Y., Venkatesh Prasad, K.S.: An efficient policy-based scheduling and allocation of virtual machines in cloud computing environment. J. Electr. Comput. Eng. 2022, 12, Article ID 5889948 (2022). https://doi.org/10.1155/2022/5889948

  13. Supreeth, S., Patil, K.: Hybrid genetic algorithm and modified-particle swarm optimization algorithm (GA-MPSO) for predicting scheduling virtual machines in educational cloud platforms. Int. J. Emerg. Technol. Learn. (iJET) 17(07), 208–225 (2022). https://doi.org/10.3991/ijet.v17i07.29223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rohith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnamurthy, K.T., Rohith, S., Basavaraj, G.M., Swathi, S., Supreeth, S. (2023). Design and Development of Walking Monitoring System for Gait Analysis. In: Morusupalli, R., Dandibhotla, T.S., Atluri, V.V., Windridge, D., Lingras, P., Komati, V.R. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2023. Lecture Notes in Computer Science(), vol 14078. Springer, Cham. https://doi.org/10.1007/978-3-031-36402-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36402-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36401-3

  • Online ISBN: 978-3-031-36402-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics