Abstract
Energy efficiency is a crucial factor in wireless sensor networks and helps in driving the network for long time. The basic approach to increase energy efficiency is routing through clustering. With this approach, many clusters of sensor nodes in the network region are formed, and a cluster head (CH) is selected for every cluster. This CH receives data packets from the cluster’s non-CH members and sends the data it has gathered to the base station (BS). But, after some transmissions, the CH can run out of energy. In this paper, we thus offer the Energy-efficient regression and Fuzzy based intelligent routing algorithm for Heterogeneous Wireless Sensor Network (HWSN). The Fine Cluster Head (FCH) has been chosen using the fuzzy inference system out of the selected CHs. Finally, the CH transfer the data gathered from the non-CH member to the chosen FCH. The hop-count from CHs to the FCH evaluated to build this effective route. Our simulation findings demonstrate that, in terms of Energy Efficiency, Packet Delivery Ratio, and Throughput, over without intelligence, and with regression models outperform the work currently being done.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Mekala, S., Chatrapati, K.S.: Present state-of-the-art of continuous neighbor discovery in asynchronous wireless sensor networks. EAI Endors. Trans. Energy Web 8(33) (2021)
Mekala, S., Shahu Chatrapati, K.: A hybrid approach to neighbour discovery in wireless sensor networks. Intell. Autom. Soft Comput. 35(1) (2023)
Mekala, S., Shahu Chatrapati, K.: Energy-efficient neighbor discovery using bacterial foraging optimization (BFO) algorithm for directional wireless sensor networks. In: Gopi, E.S. (ed.) Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication. LNEE, vol. 749, pp. 93–107. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0289-4_7
Goswami, P., et al.: Ai based energy efficient routing protocol for intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 23(2), 1670–1679 (2022). https://doi.org/10.1109/TITS.2021.3107527
Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. J. Artif. Intell. Soft Comput. Res. 5(2), 121–139 (2017). https://doi.org/10.1515/jaiscr-2015-0024
Chaudhry, R., Tapaswi, S., Kumar, N.: Fz enabled multi-objective pso for multicasting in IoT based wireless sensor networks. Inf. Sci. 498(3), 1–20 (2019). https://doi.org/10.1016/j.ins.2019.05.002
Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE. Access 6, 28573–28593 (2018). https://doi.org/10.1109/ACCESS.2018.2831228
Fanian, F., Rafsanjani, M.K.: A new fuzzy multi-hop clustering protocol with automatic rule tuning for wireless sensor networks. Appl. Soft Comput. 89(11), 106115 (2020). https://doi.org/10.1016/j.asoc.2020.106115
Hai, D.T., Son, L.H., Vinh, T.L.: Novel fuzzy clustering scheme for 3D wireless sensor networks. Appl. Soft Comput. 54(2), 141–149 (2017). https://doi.org/10.1016/j.asoc.2017.01.021
Hamzah, A., Shurman, M., Al-Jarrah, O., Taqieddin, E.: Energy-efficient fuzzy-logic-based clustering technique for hierarchical routing protocols in wireless sensor networks. Sensors 19(3), 561 (2019). https://doi.org/10.3390/s19030561
Jabbar, W.A., Saad, W.K., Ismail, M.: Meqsaolsrv: a multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in manet-WSN convergence scenarios of IoT. IEEE Access 6, 76546–76572 (2018). https://doi.org/10.1109/ACCESS.2018.2882853
Zhang, T., Chen, G., Zeng, Q., Song, G., Li, C., Duan, H.: Seamless clustering multi-hop routing protocol based on improved artificial bee colony algorithm. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–20 (2020). https://doi.org/10.1186/s13638-020-01691-8
Yu, X., Liu, Q., Liu, Y., Hu, M., Zhang, K., Xiao, R.: Uneven clustering routing algorithm based on glowworm swarm optimization. Ad Hoc Netw. 93(3), 101923 (2019). https://doi.org/10.1016/j.adhoc.2019.101923
Yang, J., Liu, F., cao, J.: Greedy discrete particle swarm optimization based routing protocol for cluster-based wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 41(7), 1–16 (2017). https://doi.org/10.1007/s12652-017-0515-3
Yang, X.-S.: Bat algorithm: literature review and applications. ArXiv preprint (2013). https://doi.org/10.48550/arXiv.1308.3900
Wang, C., Liu, X., Hu, H., Han, Y., Yao, M.: Energy-efficient and load-balanced clustering routing protocol for wireless sensor networks using a chaotic genetic algorithm. IEEE Access 8, 158082–158096 (2020). https://doi.org/10.1109/ACCESS.2020.3020158
Verma, A., Kumar, S., Gautam, P.R., Rashid, T., Kumar, A.: Fuzzy logic based effective clustering of homogeneous wireless sensor networks for mobile sink. IEEE Sens. J. 20(10), 5615–5623 (2020). https://doi.org/10.1109/JSEN.2020.2969697
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mekala, S., Mallareddy, A., Tandu, R.R., Radhika, K. (2023). Machine Learning and Fuzzy Logic Based Intelligent Algorithm for Energy Efficient Routing in Wireless Sensor Networks. In: Morusupalli, R., Dandibhotla, T.S., Atluri, V.V., Windridge, D., Lingras, P., Komati, V.R. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2023. Lecture Notes in Computer Science(), vol 14078. Springer, Cham. https://doi.org/10.1007/978-3-031-36402-0_49
Download citation
DOI: https://doi.org/10.1007/978-3-031-36402-0_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36401-3
Online ISBN: 978-3-031-36402-0
eBook Packages: Computer ScienceComputer Science (R0)