Skip to main content

Addressing Challenges in Healthcare Big Data Analytics

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14078))

  • 577 Accesses

Abstract

The exponential growth of healthcare data poses significant challenges for clinical researchers who strive to identify meaningful patterns and correlations. The complexity of this data arises from its high dimensionality, sparsity, inaccuracy, incompleteness, longitudinality, and heterogeneity. While conventional pattern recognition algorithms can partially address issues related to high dimensionality, sparsity, inaccuracy, and longitudinality, the problems of incompleteness and heterogeneity remain a persistent challenge, particularly when analyzing electronic health records (EHRs). EHRs often encompass diverse data types, such as clinical notes (text), blood pressure readings (longitudinal numerical data), MR scans (images), and DCE-MRIs (longitudinal video data), and may only include a subset of data for each patient at any given time interval. To tackle these challenges, we propose a kernel-based framework as the most suitable approach for handling heterogeneous data formats by representing them as matrices of equal terms. Our research endeavours to develop methodologies within this framework to construct a decision support system (DSS). To achieve this, we advocate for the incorporation of preprocessing mechanisms to address the challenges of incompleteness and heterogeneity prior to integration into the kernel framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aseervatham, S.: A local latent semantic analysis-based kernel for document similarities. In: 2008 IEEE International Joint Conference on Neural Networks. IJCNN 2008. (IEEE World Congress on Computational Intelligence), pp. 214–219. IEEE (2008)

    Google Scholar 

  2. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining, pp. 8-pp. IEEE (2005)

    Google Scholar 

  3. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in Neural Information Processing Systems, pp. 625–632 (2001)

    Google Scholar 

  4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  5. Daliri, M.R., Torre, V.: Shape recognition based on kernel-edit distance. Comput. Vis. Image Underst. 114(10), 1097–1103 (2010)

    Article  Google Scholar 

  6. Deng, M., Sun, F., Chen, T.: Assessment of the reliability of protein-protein interactions and protein function prediction. In: Pacific Symposium Biocomputing (PSB 2003), pp. 140–151 (2002)

    Google Scholar 

  7. Ge, H., Liu, Z., Church, G.M., Vidal, M.: Correlation between transcriptome and interactome mapping data from saccharomyces cerevisiae. Nat. Genet. 29(4), 482–486 (2001)

    Article  Google Scholar 

  8. Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Grauman, K., Darrell, T.: The pyramid match kernel: efficient learning with sets of features. J. Mach. Learn. Res. 8, 725–760 (2007)

    MATH  Google Scholar 

  10. Hofmann, T., Schölkopf, B., Smola, A.J.: A review of kernel methods in machine learning. Mac-Planck-Institut für biologische, Kybernetik, Technical report 156 (2006)

    Google Scholar 

  11. Holzinger, A., Schantl, J., Schroettner, M., Seifert, C., Verspoor, K.: Biomedical text mining: state-of-the-art, open problems and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 271–300. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43968-5_16

    Chapter  Google Scholar 

  12. Krebs, K., Milani, L.: Harnessing the power of electronic health records and genomics for drug discovery. Annu. Rev. Pharmacol. Toxicol. 63, 65–76 (2023)

    Article  Google Scholar 

  13. de Lusignan, S., Navarro, R., Chan, T., Parry, G., Dent-Brown, K., Kendrick, T.: Detecting referral and selection bias by the anonymous linkage of practice, hospital and clinic data using secure and private record linkage (SAPREL): case study from the evaluation of the improved access to psychological therapy (IAPT) service. BMC Med. Inform. Decis. Mak. 11(1), 61 (2011)

    Article  Google Scholar 

  14. Lyu, S.: Mercer kernels for object recognition with local features. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 2, pp. 223–229. IEEE (2005)

    Google Scholar 

  15. Mrowka, R., Liebermeister, W., Holste, D.: Does mapping reveal correlation between gene expression and protein-protein interaction? Nat. Genet. 33(1), 15–16 (2003)

    Article  Google Scholar 

  16. Nakaya, A., Goto, S., Kanehisa, M.: Extraction of correlated gene clusters by multiple graph comparison. Genome Inform. Ser. 12, 44–53 (2001)

    Google Scholar 

  17. Nicotra, L., Micheli, A., Starita, A.: Fisher kernel for tree structured data. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1917–1922. Citeseer (2004)

    Google Scholar 

  18. Nwegbu, N., Tirunagari, S., Windridge, D.: A novel kernel based approach to arbitrary length symbolic data with application to type 2 diabetes risk. Sci. Rep. 12(1), 4985 (2022)

    Article  Google Scholar 

  19. Panov, M., Tatarchuk, A., Mottl, V., Windridge, D.: A modified neutral point method for kernel-based fusion of pattern-recognition modalities with incomplete data sets. In: Sansone, C., Kittler, J., Roli, F. (eds.) MCS 2011. LNCS, vol. 6713, pp. 126–136. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21557-5_15

    Chapter  Google Scholar 

  20. Poh, N., Merati, A., Kittler, J.: Heterogeneous information fusion: a novel fusion paradigm for biometric systems. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE (2011)

    Google Scholar 

  21. Poh, N., Tirunagari, S., Windridge, D.: Challenges in designing an online healthcare platform for personalised patient analytics. In: 2014 IEEE Symposium on Computational Intelligence in Big Data (CIBD), pp. 1–6. IEEE (2014)

    Google Scholar 

  22. Ramanna, S., Tirunagari, S., Windridge, D.: Epileptic seizure detection using constrained singular spectrum analysis and 1D-local binary patterns. Health Technol. 10(3), 699–709 (2020). https://doi.org/10.1007/s12553-019-00395-4

    Article  Google Scholar 

  23. Ripoll, V.J.R., et al.: On the intelligent management of sepsis in the intensive care unit (2012)

    Google Scholar 

  24. Roos, C., Terlaky, T., Vial, J.P.: Interior Point Methods for Linear Optimization. Springer, Berlin (2006)

    MATH  Google Scholar 

  25. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2001)

    Google Scholar 

  26. Shen, Y., et al.: Socialized gaussian process model for human behavior prediction in a health social network. In: ICDM, vol. 12, pp. 1110–1115. Citeseer (2012)

    Google Scholar 

  27. Smola, A.J., Ovari, Z.L., Williamson, R.C.: Regularization with dot-product kernels. In: Advances in Neural Information Processing Systems, pp. 308–314 (2001)

    Google Scholar 

  28. Tirunagari, S., Bull, S., Poh, N.: Automatic classification of irregularly sampled time series with unequal lengths: a case study on estimated glomerular filtration rate. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2016)

    Google Scholar 

  29. Tirunagari, S., Bull, S.C., Vehtari, A., Farmer, C., De Lusignan, S., Poh, N.: Automatic detection of acute kidney injury episodes from primary care data. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2016)

    Google Scholar 

  30. Tirunagari, S., Poh, N., Wells, K., Bober, M., Gorden, I., Windridge, D.: Movement correction in DCE-MRI through windowed and reconstruction dynamic mode decomposition. Mach. Vis. Appl. 28, 393–407 (2017)

    Article  Google Scholar 

  31. Windridge, D., Bober, M.: A kernel-based framework for medical big-data analytics. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 197–208. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43968-5_11

    Chapter  Google Scholar 

  32. Windridge, D., Mottl, V., Tatarchuk, A., Eliseyev, A.: The neutral point method for kernel-based combination of disjoint training data in multi-modal pattern recognition. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 13–21. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72523-7_2

    Chapter  Google Scholar 

  33. Yarkiner, Z., Hunter, G., O’Neil, R., de Lusignan, S.: Applications of mixed models for investigating progression of chronic disease in a longitudinal dataset of patient records from general practice. J. Biomet. Biostat. S 9, 2 (2013)

    Google Scholar 

  34. Yu, S., Tranchevent, L.C., Moor, B., Moreau, Y.: Kernel-Based Data Fusion for Machine Learning: Methods and Applications in Bioinformatics and Text Mining, vol. 345. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19406-1

    Book  MATH  Google Scholar 

  35. Zhou, D.X.: The covering number in learning theory. J. Complex. 18(3), 739–767 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tirunagari, S., Mohan, S., Windridge, D., Balla, Y. (2023). Addressing Challenges in Healthcare Big Data Analytics. In: Morusupalli, R., Dandibhotla, T.S., Atluri, V.V., Windridge, D., Lingras, P., Komati, V.R. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2023. Lecture Notes in Computer Science(), vol 14078. Springer, Cham. https://doi.org/10.1007/978-3-031-36402-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36402-0_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36401-3

  • Online ISBN: 978-3-031-36402-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics