Skip to main content

Learning to Search for and Detect Objects in Foveal Images Using Deep Learning

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Abstract

The human visual system processes images with varied degrees of resolution, with the fovea, a small portion of the retina, capturing the highest acuity region, which gradually declines toward the field of view’s periphery. However, the majority of existing object localization methods rely on images acquired by image sensors with space-invariant resolution, ignoring biological attention mechanisms. As a region of interest pooling, this study employs a fixation prediction model that emulates human objective-guided attention of searching for a given class in an image. The foveated pictures at each fixation point are then classified to determine whether the target is present or absent in the scene. Throughout this two-stage pipeline method, we investigate the varying results obtained by utilizing high-level or panoptic features and provide a ground-truth label function for fixation sequences that is smoother, considering in a better way the spatial structure of the problem. Additionally, we present a novel dual task model capable of performing fixation prediction and detection simultaneously, allowing knowledge transfer between the two tasks. We conclude that, due to the complementary nature of both tasks, the training process benefited from the sharing of knowledge, resulting in an improvement in performance when compared to the previous approach’s baseline scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    a piece-wise linear approximation of the sigmoid function, for faster computation.

  2. 2.

    bottle, bowl, car, chair, analogue clock, cup, fork, keyboard, knife, laptop, microwave, mouse, oven, potted plant, sink, stop sign, toilet and tv.

  3. 3.

    e.g. the task bowl corresponds to the joint sub-classes mixing bowl and soup bowl.

  4. 4.

    We select a human sequence randomly from the train split for the same search target class on the testing set.

References

  1. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2012)

    Article  Google Scholar 

  2. Bandera, C., Scott, P.D.: Foveal machine vision systems. In Conference Proceedings. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 596–599. IEEE (1989)

    Google Scholar 

  3. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  5. Fukushima, K.: Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1(2), 119–130 (1988)

    Article  Google Scholar 

  6. Akbas, E., Eckstein, M.P.: Object detection through search with a foveated visual system. PLoS Comput. Biol. 13(10), e1005743 (2017)

    Google Scholar 

  7. James, W.: The Principles of Psychology, vol. 1. Henry Holt and Co. (1890)

    Google Scholar 

  8. Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201–215 (2002)

    Article  Google Scholar 

  9. Yarbus, A.L.: Eye Movements and Vision. Springer, Heidelberg (2013)

    Google Scholar 

  10. Ngo, T., Manjunath, B.S.: Saccade gaze prediction using a recurrent neural network. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3435–3439. IEEE (2017)

    Google Scholar 

  11. Graves, A.: Long short-term memory. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks, vol. 385, pp. 37–45. Sprnger, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_4

    Chapter  MATH  Google Scholar 

  12. Kreiman, G., Zhang, M.: Finding any Waldo: zero-shot invariant and efficient visual search (2018)

    Google Scholar 

  13. Nunes, A., Figueiredo, R., Moreno, P.: Learning to search for objects in images from human gaze sequences. In: Campilho, A., Karray, F., Wang, Z. (eds.) ICIAR 2020. LNCS, vol. 12131, pp. 280–292. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50347-5_25

    Chapter  Google Scholar 

  14. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  15. Chen, Y., Yang, Z., Ahn, S., Samaras, D., Hoai, M., Zelinsky, G.: COCO-search18 fixation dataset for predicting goal-directed attention control. Sci. Rep. 11(1), 1–11 (2021)

    Google Scholar 

  16. Yang, Z., et al.: Predicting goal-directed human attention using inverse reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2020)

    Google Scholar 

  17. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)

    Google Scholar 

  18. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6399–6408 (2019)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  21. Cabarrão, B.: Learning to search for objects in foveal images using deep learning, Master’s thesis, Universidade de Lisboa - Instituto Superior Técnico (2022)

    Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgements

Work partially supported by the LARSyS - FCT Project [UIDB/50009/2020], the H2020 FET-Open project Reconstructing the Past: Artificial Intelligence and Robotics Meet Cultural Heritage (RePAIR) under EU grant agreement 964854, the Lisbon Ellis Unit (LUMLIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plinio Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paula, B., Moreno, P. (2023). Learning to Search for and Detect Objects in Foveal Images Using Deep Learning. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics